Feng Zhao, Jian Peng, Joe Debartolo, Karl F Freed, Tobin R Sosnick, Jinbo Xu
{"title":"从头开始折叠的概率图模型。","authors":"Feng Zhao, Jian Peng, Joe Debartolo, Karl F Freed, Tobin R Sosnick, Jinbo Xu","doi":"10.1007/978-3-642-02008-7_5","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant progress in recent years, <i>ab initio</i> folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different from the widely-used fragment assembly method and the lattice model for protein folding, our graphical model can explore protein conformations in a continuous space according to their probability. The probability of a protein conformation reflects its stability and is estimated from PSI-BLAST sequence profile and predicted secondary structure. Experimental results indicate that this new method compares favorably with the fragment assembly method and the lattice model.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"5541 ","pages":"59-73"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-02008-7_5","citationCount":"9","resultStr":"{\"title\":\"A Probabilistic Graphical Model for Ab Initio Folding.\",\"authors\":\"Feng Zhao, Jian Peng, Joe Debartolo, Karl F Freed, Tobin R Sosnick, Jinbo Xu\",\"doi\":\"10.1007/978-3-642-02008-7_5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite significant progress in recent years, <i>ab initio</i> folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different from the widely-used fragment assembly method and the lattice model for protein folding, our graphical model can explore protein conformations in a continuous space according to their probability. The probability of a protein conformation reflects its stability and is estimated from PSI-BLAST sequence profile and predicted secondary structure. Experimental results indicate that this new method compares favorably with the fragment assembly method and the lattice model.</p>\",\"PeriodicalId\":74675,\"journal\":{\"name\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"volume\":\"5541 \",\"pages\":\"59-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-642-02008-7_5\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-02008-7_5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-02008-7_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Probabilistic Graphical Model for Ab Initio Folding.
Despite significant progress in recent years, ab initio folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different from the widely-used fragment assembly method and the lattice model for protein folding, our graphical model can explore protein conformations in a continuous space according to their probability. The probability of a protein conformation reflects its stability and is estimated from PSI-BLAST sequence profile and predicted secondary structure. Experimental results indicate that this new method compares favorably with the fragment assembly method and the lattice model.