从头开始折叠的概率图模型。

Feng Zhao, Jian Peng, Joe Debartolo, Karl F Freed, Tobin R Sosnick, Jinbo Xu
{"title":"从头开始折叠的概率图模型。","authors":"Feng Zhao,&nbsp;Jian Peng,&nbsp;Joe Debartolo,&nbsp;Karl F Freed,&nbsp;Tobin R Sosnick,&nbsp;Jinbo Xu","doi":"10.1007/978-3-642-02008-7_5","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant progress in recent years, <i>ab initio</i> folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different from the widely-used fragment assembly method and the lattice model for protein folding, our graphical model can explore protein conformations in a continuous space according to their probability. The probability of a protein conformation reflects its stability and is estimated from PSI-BLAST sequence profile and predicted secondary structure. Experimental results indicate that this new method compares favorably with the fragment assembly method and the lattice model.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"5541 ","pages":"59-73"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-02008-7_5","citationCount":"9","resultStr":"{\"title\":\"A Probabilistic Graphical Model for Ab Initio Folding.\",\"authors\":\"Feng Zhao,&nbsp;Jian Peng,&nbsp;Joe Debartolo,&nbsp;Karl F Freed,&nbsp;Tobin R Sosnick,&nbsp;Jinbo Xu\",\"doi\":\"10.1007/978-3-642-02008-7_5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite significant progress in recent years, <i>ab initio</i> folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different from the widely-used fragment assembly method and the lattice model for protein folding, our graphical model can explore protein conformations in a continuous space according to their probability. The probability of a protein conformation reflects its stability and is estimated from PSI-BLAST sequence profile and predicted secondary structure. Experimental results indicate that this new method compares favorably with the fragment assembly method and the lattice model.</p>\",\"PeriodicalId\":74675,\"journal\":{\"name\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"volume\":\"5541 \",\"pages\":\"59-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-642-02008-7_5\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-02008-7_5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-02008-7_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

尽管近年来取得了重大进展,从头算折叠仍然是结构生物学中最具挑战性的问题之一。本文提出了一种从头开始折叠的概率图形模型,该模型利用条件随机场(CRFs)和方向统计来模拟蛋白质一级序列与其三维结构之间的关系。与目前广泛使用的片段组装方法和蛋白质折叠的晶格模型不同,我们的图形模型可以根据蛋白质构象的概率在连续空间中探索蛋白质构象。蛋白质构象的概率反映了其稳定性,并通过PSI-BLAST序列剖面和预测的二级结构来估计。实验结果表明,该方法与片段组装法和点阵模型相比具有较好的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Probabilistic Graphical Model for Ab Initio Folding.

Despite significant progress in recent years, ab initio folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different from the widely-used fragment assembly method and the lattice model for protein folding, our graphical model can explore protein conformations in a continuous space according to their probability. The probability of a protein conformation reflects its stability and is estimated from PSI-BLAST sequence profile and predicted secondary structure. Experimental results indicate that this new method compares favorably with the fragment assembly method and the lattice model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Discovery of Genetic Relatives across Large-Scale and Distributed Genomic Datasets. Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16–19, 2023, Proceedings Comparative Analysis of Alternative Splicing Events in Foliar Transcriptomes of Potato Plants Inoculated with Phytophthora Infestans Identification and Bioinformatics Analysis of TCP Family Genes in Tree Peony Computational Molecular Biology Interdisciplinary Technological Integration and New Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1