利用高斯过程模型预测生物系统仿真参数。

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Statistical Analysis and Data Mining Pub Date : 2012-12-01 DOI:10.1002/sam.11163
Xiangxin Zhu, Max Welling, Fang Jin, John Lowengrub
{"title":"利用高斯过程模型预测生物系统仿真参数。","authors":"Xiangxin Zhu,&nbsp;Max Welling,&nbsp;Fang Jin,&nbsp;John Lowengrub","doi":"10.1002/sam.11163","DOIUrl":null,"url":null,"abstract":"<p><p>Finding optimal parameters for simulating biological systems is usually a very difficult and expensive task in systems biology. Brute force searching is infeasible in practice because of the huge (often infinite) search space. In this article, we propose predicting the parameters efficiently by learning the relationship between system outputs and parameters using regression. However, the conventional parametric regression models suffer from two issues, thus are not applicable to this problem. First, restricting the regression function as a certain fixed type (e.g. linear, polynomial, etc.) introduces too strong assumptions that reduce the model flexibility. Second, conventional regression models fail to take into account the fact that a fixed parameter value may correspond to multiple different outputs due to the stochastic nature of most biological simulations, and the existence of a potentially large number of other factors that affect the simulation outputs. We propose a novel approach based on a Gaussian process model that addresses the two issues jointly. We apply our approach to a tumor vessel growth model and the feedback Wright-Fisher model. The experimental results show that our method can predict the parameter values of both of the two models with high accuracy.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/sam.11163","citationCount":"9","resultStr":"{\"title\":\"Predicting Simulation Parameters of Biological Systems Using a Gaussian Process Model.\",\"authors\":\"Xiangxin Zhu,&nbsp;Max Welling,&nbsp;Fang Jin,&nbsp;John Lowengrub\",\"doi\":\"10.1002/sam.11163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Finding optimal parameters for simulating biological systems is usually a very difficult and expensive task in systems biology. Brute force searching is infeasible in practice because of the huge (often infinite) search space. In this article, we propose predicting the parameters efficiently by learning the relationship between system outputs and parameters using regression. However, the conventional parametric regression models suffer from two issues, thus are not applicable to this problem. First, restricting the regression function as a certain fixed type (e.g. linear, polynomial, etc.) introduces too strong assumptions that reduce the model flexibility. Second, conventional regression models fail to take into account the fact that a fixed parameter value may correspond to multiple different outputs due to the stochastic nature of most biological simulations, and the existence of a potentially large number of other factors that affect the simulation outputs. We propose a novel approach based on a Gaussian process model that addresses the two issues jointly. We apply our approach to a tumor vessel growth model and the feedback Wright-Fisher model. The experimental results show that our method can predict the parameter values of both of the two models with high accuracy.</p>\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/sam.11163\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11163\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11163","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9

摘要

在系统生物学中,寻找模拟生物系统的最优参数通常是一项非常困难和昂贵的任务。由于巨大的(通常是无限的)搜索空间,暴力搜索在实践中是不可行的。在本文中,我们提出通过学习系统输出与参数之间的关系,使用回归来有效地预测参数。然而,传统的参数回归模型存在两个问题,因此不适用于该问题。首先,将回归函数限制为某种固定类型(例如线性,多项式等)引入了过于强烈的假设,从而降低了模型的灵活性。其次,传统的回归模型没有考虑到这样一个事实,即由于大多数生物模拟的随机性,固定的参数值可能对应多个不同的输出,并且存在潜在的大量其他因素影响模拟输出。我们提出了一种基于高斯过程模型的新方法,共同解决了这两个问题。我们将我们的方法应用于肿瘤血管生长模型和反馈Wright-Fisher模型。实验结果表明,该方法能较好地预测两种模型的参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Simulation Parameters of Biological Systems Using a Gaussian Process Model.

Finding optimal parameters for simulating biological systems is usually a very difficult and expensive task in systems biology. Brute force searching is infeasible in practice because of the huge (often infinite) search space. In this article, we propose predicting the parameters efficiently by learning the relationship between system outputs and parameters using regression. However, the conventional parametric regression models suffer from two issues, thus are not applicable to this problem. First, restricting the regression function as a certain fixed type (e.g. linear, polynomial, etc.) introduces too strong assumptions that reduce the model flexibility. Second, conventional regression models fail to take into account the fact that a fixed parameter value may correspond to multiple different outputs due to the stochastic nature of most biological simulations, and the existence of a potentially large number of other factors that affect the simulation outputs. We propose a novel approach based on a Gaussian process model that addresses the two issues jointly. We apply our approach to a tumor vessel growth model and the feedback Wright-Fisher model. The experimental results show that our method can predict the parameter values of both of the two models with high accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
期刊最新文献
Quantifying Epistemic Uncertainty in Binary Classification via Accuracy Gain A new logarithmic multiplicative distortion for correlation analysis Revisiting Winnow: A modified online feature selection algorithm for efficient binary classification A random forest approach for interval selection in functional regression Characterizing climate pathways using feature importance on echo state networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1