Adjudin 通过靶向药物转运体破坏精子发生:乳腺癌抗性蛋白(BCRP)的启示

Spermatogenesis Pub Date : 2013-04-01 DOI:10.4161/spmg.24993
Xiaojing Qian, Yan-Ho Cheng, Pranitha Jenardhanan, Dolores D Mruk, Premendu P Mathur, Weiliang Xia, Bruno Silvestrini, C Yan Cheng
{"title":"Adjudin 通过靶向药物转运体破坏精子发生:乳腺癌抗性蛋白(BCRP)的启示","authors":"Xiaojing Qian, Yan-Ho Cheng, Pranitha Jenardhanan, Dolores D Mruk, Premendu P Mathur, Weiliang Xia, Bruno Silvestrini, C Yan Cheng","doi":"10.4161/spmg.24993","DOIUrl":null,"url":null,"abstract":"<p><p>For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood-testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.g., adjudin) from entering the seminiferous epithelium to exert their effects. Recent studies have shown that BCRP is highly expressed by endothelial cells of the microvessels in the interstitium in the testis and also peritubular myoid cells in tunica propria even though it is absent from Sertoli cells at the site of the BTB. Furthermore, BCRP is also expressed spatiotemporally by Sertoli cells and step 19 spermatids in the rat testis and stage-specifically, limiting to stage VII‒VIII of the epithelial cycle, and restricted to the apical ectoplasmic specialization [apical ES, a testis-specific F-actin-rich adherens junction (AJ)]. Interestingly, adjudin was recently shown to be capable of downregulating BCRP expression at the apical ES. In this Opinion article, we critically discuss the latest findings on BCRP; in particular, we provide some findings utilizing molecular modeling to define the interacting domains of BCRP with adjudin. Based on this information, it is hoped that the next generation of adjudin analogs to be synthesized can improve their efficacy in downregulating BCRP and perhaps other drug efflux transporters in the testis to improve their efficacy to traverse the BTB by modifying their interacting domains.</p>","PeriodicalId":22074,"journal":{"name":"Spermatogenesis","volume":"3 2","pages":"e24993"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/d4/spmg-3-e24993.PMC3710224.pdf","citationCount":"0","resultStr":"{\"title\":\"Adjudin disrupts spermatogenesis by targeting drug transporters: Lesson from the breast cancer resistance protein (BCRP).\",\"authors\":\"Xiaojing Qian, Yan-Ho Cheng, Pranitha Jenardhanan, Dolores D Mruk, Premendu P Mathur, Weiliang Xia, Bruno Silvestrini, C Yan Cheng\",\"doi\":\"10.4161/spmg.24993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood-testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.g., adjudin) from entering the seminiferous epithelium to exert their effects. Recent studies have shown that BCRP is highly expressed by endothelial cells of the microvessels in the interstitium in the testis and also peritubular myoid cells in tunica propria even though it is absent from Sertoli cells at the site of the BTB. Furthermore, BCRP is also expressed spatiotemporally by Sertoli cells and step 19 spermatids in the rat testis and stage-specifically, limiting to stage VII‒VIII of the epithelial cycle, and restricted to the apical ectoplasmic specialization [apical ES, a testis-specific F-actin-rich adherens junction (AJ)]. Interestingly, adjudin was recently shown to be capable of downregulating BCRP expression at the apical ES. In this Opinion article, we critically discuss the latest findings on BCRP; in particular, we provide some findings utilizing molecular modeling to define the interacting domains of BCRP with adjudin. Based on this information, it is hoped that the next generation of adjudin analogs to be synthesized can improve their efficacy in downregulating BCRP and perhaps other drug efflux transporters in the testis to improve their efficacy to traverse the BTB by modifying their interacting domains.</p>\",\"PeriodicalId\":22074,\"journal\":{\"name\":\"Spermatogenesis\",\"volume\":\"3 2\",\"pages\":\"e24993\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/d4/spmg-3-e24993.PMC3710224.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spermatogenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/spmg.24993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spermatogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/spmg.24993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于在睾丸局部而不是通过下丘脑-垂体-睾丸轴发挥药效的非激素类男性避孕药,如能破坏生殖细胞粘附性的睾酮素,其开发的一个主要障碍是提高其生物利用度,使其能通过血液-睾丸屏障(BTB)有效地输送到曲细精管上皮细胞。如果能做到这一点,就能扩大其疗效与一般毒性之间的差距。然而,构成 BTB 的 Sertoli 细胞、固有膜的管周肌细胞、处于不同发育阶段的生殖细胞以及构成间质微血管的内皮细胞都具有多种药物转运体,其中最主要的是外排药物转运体,如 P-糖蛋白、多药耐药性相关蛋白 1 (MRP1) 和乳腺癌耐药性蛋白 (BCRP)、adjudin)进入曲细精管上皮细胞发挥药效。最近的研究表明,BCRP在睾丸间质微血管内皮细胞和固有膜管周肌细胞中高度表达,但在BTB部位的Sertoli细胞中却没有表达。此外,BCRP 在大鼠睾丸的 Sertoli 细胞和第 19 步精子中也有时空表达,而且有阶段特异性,仅限于上皮细胞周期的第 VII-VIII 阶段,并局限于顶端外质特化[顶端 ES,睾丸特异的富含 F-肌动蛋白的粘连接头(AJ)]。有趣的是,最近研究表明,adjudin 能够下调顶端 ES 上 BCRP 的表达。在这篇 "观点 "文章中,我们对有关 BCRP 的最新发现进行了批判性讨论;特别是,我们提供了一些利用分子建模定义 BCRP 与 adjudin 相互作用域的发现。基于这些信息,我们希望即将合成的下一代adjudin类似物能够改善其在下调BCRP以及睾丸中其他药物外流转运体方面的功效,从而通过改变它们的相互作用结构域来提高它们穿越BTB的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adjudin disrupts spermatogenesis by targeting drug transporters: Lesson from the breast cancer resistance protein (BCRP).

For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood-testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.g., adjudin) from entering the seminiferous epithelium to exert their effects. Recent studies have shown that BCRP is highly expressed by endothelial cells of the microvessels in the interstitium in the testis and also peritubular myoid cells in tunica propria even though it is absent from Sertoli cells at the site of the BTB. Furthermore, BCRP is also expressed spatiotemporally by Sertoli cells and step 19 spermatids in the rat testis and stage-specifically, limiting to stage VII‒VIII of the epithelial cycle, and restricted to the apical ectoplasmic specialization [apical ES, a testis-specific F-actin-rich adherens junction (AJ)]. Interestingly, adjudin was recently shown to be capable of downregulating BCRP expression at the apical ES. In this Opinion article, we critically discuss the latest findings on BCRP; in particular, we provide some findings utilizing molecular modeling to define the interacting domains of BCRP with adjudin. Based on this information, it is hoped that the next generation of adjudin analogs to be synthesized can improve their efficacy in downregulating BCRP and perhaps other drug efflux transporters in the testis to improve their efficacy to traverse the BTB by modifying their interacting domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational characterization and integrative analysis of proteins involved in spermatogenesis Genetics of mammalian meiosis Roles of membrane and nuclear estrogen receptors in spermatogenesis Androgen regulation of spermatogenesis Cytoskeletons (F-actin) and spermatogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1