Marta Kuczeriszka, Leszek Dobrowolski, Agnieszka Walkowska, Janusz Sadowski, Elżbieta Kompanowska-Jezierska
{"title":"腺苷对大鼠肾功能的影响:钠摄入量和细胞色素P450的作用。","authors":"Marta Kuczeriszka, Leszek Dobrowolski, Agnieszka Walkowska, Janusz Sadowski, Elżbieta Kompanowska-Jezierska","doi":"10.1159/000353705","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Adenosine (ADO) causes vasodilation in most tissues. In the kidney it can induce vasoconstriction or vasodilation, depending on the prevailing stimulation of A1 or A2 receptors (A1R, A2R). ADO-induced alterations of renal excretion may be secondary to haemodynamic changes, or reflect a direct influence on tubular transport. This whole-kidney study explored renal excretory responses to ADO receptor stimulation as related to renal haemodynamics sodium intake and cytochrome P450 (CYP-450) activity.</p><p><strong>Methods: </strong>The effects of ADO or an A2aR agonist (DPMA) on urine flow (V), sodium excretion (UNaV) and total solute excretion were examined in anaesthetized Wistar rats on a low-sodium or high-sodium (HS) diet. Total renal blood flow (RBF; renal artery probe), and outer- and inner-medullary blood flows (OM-BF, IM-BF; laser-Doppler fluxes) were also determined.</p><p><strong>Results: </strong>Consistent opposed effects of ADO and DPMA were only observed with the HS diet. ADO increased V (150%) and UNaV (100%); there were also significant increases in RBF, OM-BF and IM-BF. These changes were prevented by 1-aminobenzotriazol, a CYP-450 inhibitor. In HS rats, DPMA significantly decreased arterial blood pressure and renal excretion.</p><p><strong>Conclusions: </strong>Post-ADO diuresis/natriuresis was in part secondary to renal hyperperfusion; the response was probably mediated by CYP-450-dependent active agents. Selective A2aR stimulation induced systemic vasodilation, major hypotension, and a secondary decrease in renal excretion.</p>","PeriodicalId":18996,"journal":{"name":"Nephron Physiology","volume":"123 1-2","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000353705","citationCount":"4","resultStr":"{\"title\":\"Adenosine effects on renal function in the rat: role of sodium intake and cytochrome P450.\",\"authors\":\"Marta Kuczeriszka, Leszek Dobrowolski, Agnieszka Walkowska, Janusz Sadowski, Elżbieta Kompanowska-Jezierska\",\"doi\":\"10.1159/000353705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Adenosine (ADO) causes vasodilation in most tissues. In the kidney it can induce vasoconstriction or vasodilation, depending on the prevailing stimulation of A1 or A2 receptors (A1R, A2R). ADO-induced alterations of renal excretion may be secondary to haemodynamic changes, or reflect a direct influence on tubular transport. This whole-kidney study explored renal excretory responses to ADO receptor stimulation as related to renal haemodynamics sodium intake and cytochrome P450 (CYP-450) activity.</p><p><strong>Methods: </strong>The effects of ADO or an A2aR agonist (DPMA) on urine flow (V), sodium excretion (UNaV) and total solute excretion were examined in anaesthetized Wistar rats on a low-sodium or high-sodium (HS) diet. Total renal blood flow (RBF; renal artery probe), and outer- and inner-medullary blood flows (OM-BF, IM-BF; laser-Doppler fluxes) were also determined.</p><p><strong>Results: </strong>Consistent opposed effects of ADO and DPMA were only observed with the HS diet. ADO increased V (150%) and UNaV (100%); there were also significant increases in RBF, OM-BF and IM-BF. These changes were prevented by 1-aminobenzotriazol, a CYP-450 inhibitor. In HS rats, DPMA significantly decreased arterial blood pressure and renal excretion.</p><p><strong>Conclusions: </strong>Post-ADO diuresis/natriuresis was in part secondary to renal hyperperfusion; the response was probably mediated by CYP-450-dependent active agents. Selective A2aR stimulation induced systemic vasodilation, major hypotension, and a secondary decrease in renal excretion.</p>\",\"PeriodicalId\":18996,\"journal\":{\"name\":\"Nephron Physiology\",\"volume\":\"123 1-2\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000353705\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000353705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000353705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/7/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Adenosine effects on renal function in the rat: role of sodium intake and cytochrome P450.
Background/aims: Adenosine (ADO) causes vasodilation in most tissues. In the kidney it can induce vasoconstriction or vasodilation, depending on the prevailing stimulation of A1 or A2 receptors (A1R, A2R). ADO-induced alterations of renal excretion may be secondary to haemodynamic changes, or reflect a direct influence on tubular transport. This whole-kidney study explored renal excretory responses to ADO receptor stimulation as related to renal haemodynamics sodium intake and cytochrome P450 (CYP-450) activity.
Methods: The effects of ADO or an A2aR agonist (DPMA) on urine flow (V), sodium excretion (UNaV) and total solute excretion were examined in anaesthetized Wistar rats on a low-sodium or high-sodium (HS) diet. Total renal blood flow (RBF; renal artery probe), and outer- and inner-medullary blood flows (OM-BF, IM-BF; laser-Doppler fluxes) were also determined.
Results: Consistent opposed effects of ADO and DPMA were only observed with the HS diet. ADO increased V (150%) and UNaV (100%); there were also significant increases in RBF, OM-BF and IM-BF. These changes were prevented by 1-aminobenzotriazol, a CYP-450 inhibitor. In HS rats, DPMA significantly decreased arterial blood pressure and renal excretion.
Conclusions: Post-ADO diuresis/natriuresis was in part secondary to renal hyperperfusion; the response was probably mediated by CYP-450-dependent active agents. Selective A2aR stimulation induced systemic vasodilation, major hypotension, and a secondary decrease in renal excretion.