基于变换不变特征的功能性MR图像配准与神经活动建模。

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2013-01-01 Epub Date: 2013-07-30 DOI:10.1504/IJCBDD.2013.055456
Jiaqi Gong, Qi Hao, Fei Hu
{"title":"基于变换不变特征的功能性MR图像配准与神经活动建模。","authors":"Jiaqi Gong,&nbsp;Qi Hao,&nbsp;Fei Hu","doi":"10.1504/IJCBDD.2013.055456","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a set of non-rigid image registration and neural activity modelling methods using functional MR Images (fMRI) are proposed based on transform-invariant feature representations. Our work made two contributions. First, we propose to use a transform-invariant feature to improve image registration performance of Iterative Closest Point (ICP) based methods. The proposed feature utilises Gaussian Mixture Models (GMM) to describe the local topological structure of fMRI data. Second, we propose to use a 3-dimensional Scale-Invariant Feature Transform (SIFT) based descriptor to represent neural activities related to drinking behaviour. As a result, neural activities patterns of different subjects drinking water or intaking glucose can be recognised, with strong robustness against various artefacts. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"6 3","pages":"175-89"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2013.055456","citationCount":"0","resultStr":"{\"title\":\"Transform-invariant feature based functional MR image registration and neural activity modelling.\",\"authors\":\"Jiaqi Gong,&nbsp;Qi Hao,&nbsp;Fei Hu\",\"doi\":\"10.1504/IJCBDD.2013.055456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a set of non-rigid image registration and neural activity modelling methods using functional MR Images (fMRI) are proposed based on transform-invariant feature representations. Our work made two contributions. First, we propose to use a transform-invariant feature to improve image registration performance of Iterative Closest Point (ICP) based methods. The proposed feature utilises Gaussian Mixture Models (GMM) to describe the local topological structure of fMRI data. Second, we propose to use a 3-dimensional Scale-Invariant Feature Transform (SIFT) based descriptor to represent neural activities related to drinking behaviour. As a result, neural activities patterns of different subjects drinking water or intaking glucose can be recognised, with strong robustness against various artefacts. </p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"6 3\",\"pages\":\"175-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJCBDD.2013.055456\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2013.055456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2013.055456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/7/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一套基于变换不变特征表示的功能磁共振图像(fMRI)非刚性图像配准和神经活动建模方法。我们的工作有两个贡献。首先,我们提出使用变换不变特征来提高基于迭代最近点(ICP)方法的图像配准性能。所提出的特征利用高斯混合模型(GMM)来描述fMRI数据的局部拓扑结构。其次,我们建议使用基于三维尺度不变特征变换(SIFT)的描述符来表示与饮酒行为相关的神经活动。因此,可以识别不同受试者喝水或摄入葡萄糖的神经活动模式,对各种伪像具有很强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transform-invariant feature based functional MR image registration and neural activity modelling.

In this paper, a set of non-rigid image registration and neural activity modelling methods using functional MR Images (fMRI) are proposed based on transform-invariant feature representations. Our work made two contributions. First, we propose to use a transform-invariant feature to improve image registration performance of Iterative Closest Point (ICP) based methods. The proposed feature utilises Gaussian Mixture Models (GMM) to describe the local topological structure of fMRI data. Second, we propose to use a 3-dimensional Scale-Invariant Feature Transform (SIFT) based descriptor to represent neural activities related to drinking behaviour. As a result, neural activities patterns of different subjects drinking water or intaking glucose can be recognised, with strong robustness against various artefacts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1