Casey Scott Duckwall, Taylor Athanasaw Murphy, Jamey Dale Young
{"title":"用(13)C通量分析绘制癌细胞代谢图谱:最新进展和未来挑战","authors":"Casey Scott Duckwall, Taylor Athanasaw Murphy, Jamey Dale Young","doi":"10.4103/1477-3163.115422","DOIUrl":null,"url":null,"abstract":"<p><p>The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of(13)C metabolic flux analysis (MFA) to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case. </p>","PeriodicalId":52464,"journal":{"name":"Journal of Carcinogenesis","volume":"12 ","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4103/1477-3163.115422","citationCount":"33","resultStr":"{\"title\":\"Mapping cancer cell metabolism with(13)C flux analysis: Recent progress and future challenges.\",\"authors\":\"Casey Scott Duckwall, Taylor Athanasaw Murphy, Jamey Dale Young\",\"doi\":\"10.4103/1477-3163.115422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of(13)C metabolic flux analysis (MFA) to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case. </p>\",\"PeriodicalId\":52464,\"journal\":{\"name\":\"Journal of Carcinogenesis\",\"volume\":\"12 \",\"pages\":\"13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4103/1477-3163.115422\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Carcinogenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/1477-3163.115422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Carcinogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/1477-3163.115422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Mapping cancer cell metabolism with(13)C flux analysis: Recent progress and future challenges.
The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of(13)C metabolic flux analysis (MFA) to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case.
期刊介绍:
Journal of Carcinogenesis considers manuscripts in many areas of carcinogenesis and Chemoprevention. Primary areas of interest to the journal include: physical and chemical carcinogenesis and mutagenesis; processes influencing or modulating carcinogenesis, such as DNA repair; genetics, nutrition, and metabolism of carcinogens; the mechanism of action of carcinogens and modulating agents; epidemiological studies; and, the formation, detection, identification, and quantification of environmental carcinogens. Manuscripts that contribute to the understanding of cancer prevention are especially encouraged for submission