{"title":"事件相关振荡反映了注意缺陷/多动障碍儿童的功能不对称。","authors":"Juliana Yordanova, Vasil Kolev, Aribert Rothenberger","doi":"10.1016/b978-0-7020-5307-8.00018-1","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have found that event-related theta and gamma oscillations elicited in an auditory selective attention task are deviant in children with attention deficit/hyperactivity disorder (ADHD). It has been suggested that these deviations are associated with deficient motor inhibition in ADHD, which may lead to increased excitability of not only the motor generation networks but also the networks involved in sensory and cognitive processing of the stimulus requiring motor response. Within this suggestion, the present study used the same experimental database to compare the motor cortical activation of healthy controls and children with ADHD during the performance of the auditory selective attention task. Electroencephalography mu (8-12 Hz) activity at C3 and C4 electrodes was used as a measure of motor cortical activation. Mu power was analyzed for four stimulus conditions of the task (attended target, unattended target, attended nontarget, and unattended nontarget). It was found that motor cortical activation as reflected by mu power suppression was not overall greater in ADHD than healthy children. However, stimuli that possessed only partial target features and did not require motor responding (unattended target and attended nontarget) produced a significant reduction of mu activity in ADHD patients. These results suggest that motor cortical excitability is not generally increased in ADHD children. Rather, the co-existence of conflict features in complex stimuli induces task-irrelevant motor activation in these children. The deficient inhibition of motor cortical networks contralateral to the response may therefore be responsible for the functional asymmetry in stimulus processing in ADHD.</p>","PeriodicalId":85606,"journal":{"name":"Supplements to Clinical neurophysiology","volume":"62 ","pages":"289-301"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/b978-0-7020-5307-8.00018-1","citationCount":"28","resultStr":"{\"title\":\"Event-related oscillations reflect functional asymmetry in children with attention deficit/hyperactivity disorder.\",\"authors\":\"Juliana Yordanova, Vasil Kolev, Aribert Rothenberger\",\"doi\":\"10.1016/b978-0-7020-5307-8.00018-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies have found that event-related theta and gamma oscillations elicited in an auditory selective attention task are deviant in children with attention deficit/hyperactivity disorder (ADHD). It has been suggested that these deviations are associated with deficient motor inhibition in ADHD, which may lead to increased excitability of not only the motor generation networks but also the networks involved in sensory and cognitive processing of the stimulus requiring motor response. Within this suggestion, the present study used the same experimental database to compare the motor cortical activation of healthy controls and children with ADHD during the performance of the auditory selective attention task. Electroencephalography mu (8-12 Hz) activity at C3 and C4 electrodes was used as a measure of motor cortical activation. Mu power was analyzed for four stimulus conditions of the task (attended target, unattended target, attended nontarget, and unattended nontarget). It was found that motor cortical activation as reflected by mu power suppression was not overall greater in ADHD than healthy children. However, stimuli that possessed only partial target features and did not require motor responding (unattended target and attended nontarget) produced a significant reduction of mu activity in ADHD patients. These results suggest that motor cortical excitability is not generally increased in ADHD children. Rather, the co-existence of conflict features in complex stimuli induces task-irrelevant motor activation in these children. The deficient inhibition of motor cortical networks contralateral to the response may therefore be responsible for the functional asymmetry in stimulus processing in ADHD.</p>\",\"PeriodicalId\":85606,\"journal\":{\"name\":\"Supplements to Clinical neurophysiology\",\"volume\":\"62 \",\"pages\":\"289-301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/b978-0-7020-5307-8.00018-1\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supplements to Clinical neurophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/b978-0-7020-5307-8.00018-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supplements to Clinical neurophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/b978-0-7020-5307-8.00018-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Event-related oscillations reflect functional asymmetry in children with attention deficit/hyperactivity disorder.
Previous studies have found that event-related theta and gamma oscillations elicited in an auditory selective attention task are deviant in children with attention deficit/hyperactivity disorder (ADHD). It has been suggested that these deviations are associated with deficient motor inhibition in ADHD, which may lead to increased excitability of not only the motor generation networks but also the networks involved in sensory and cognitive processing of the stimulus requiring motor response. Within this suggestion, the present study used the same experimental database to compare the motor cortical activation of healthy controls and children with ADHD during the performance of the auditory selective attention task. Electroencephalography mu (8-12 Hz) activity at C3 and C4 electrodes was used as a measure of motor cortical activation. Mu power was analyzed for four stimulus conditions of the task (attended target, unattended target, attended nontarget, and unattended nontarget). It was found that motor cortical activation as reflected by mu power suppression was not overall greater in ADHD than healthy children. However, stimuli that possessed only partial target features and did not require motor responding (unattended target and attended nontarget) produced a significant reduction of mu activity in ADHD patients. These results suggest that motor cortical excitability is not generally increased in ADHD children. Rather, the co-existence of conflict features in complex stimuli induces task-irrelevant motor activation in these children. The deficient inhibition of motor cortical networks contralateral to the response may therefore be responsible for the functional asymmetry in stimulus processing in ADHD.