用于基于表达的各种类型基因组学数据整合的贝叶斯方法。

Elizabeth M Jennings, Jeffrey S Morris, Raymond J Carroll, Ganiraju C Manyam, Veerabhadran Baladandayuthapani
{"title":"用于基于表达的各种类型基因组学数据整合的贝叶斯方法。","authors":"Elizabeth M Jennings,&nbsp;Jeffrey S Morris,&nbsp;Raymond J Carroll,&nbsp;Ganiraju C Manyam,&nbsp;Veerabhadran Baladandayuthapani","doi":"10.1186/1687-4153-2013-13","DOIUrl":null,"url":null,"abstract":"<p><p>: We propose methods to integrate data across several genomic platforms using a hierarchical Bayesian analysis framework that incorporates the biological relationships among the platforms to identify genes whose expression is related to clinical outcomes in cancer. This integrated approach combines information across all platforms, leading to increased statistical power in finding these predictive genes, and further provides mechanistic information about the manner in which the gene affects the outcome. We demonstrate the advantages of the shrinkage estimation used by this approach through a simulation, and finally, we apply our method to a Glioblastoma Multiforme dataset and identify several genes potentially associated with the patients' survival. We find 12 positive prognostic markers associated with nine genes and 13 negative prognostic markers associated with nine genes. </p>","PeriodicalId":72957,"journal":{"name":"EURASIP journal on bioinformatics & systems biology","volume":"2013 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1687-4153-2013-13","citationCount":"26","resultStr":"{\"title\":\"Bayesian methods for expression-based integration of various types of genomics data.\",\"authors\":\"Elizabeth M Jennings,&nbsp;Jeffrey S Morris,&nbsp;Raymond J Carroll,&nbsp;Ganiraju C Manyam,&nbsp;Veerabhadran Baladandayuthapani\",\"doi\":\"10.1186/1687-4153-2013-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>: We propose methods to integrate data across several genomic platforms using a hierarchical Bayesian analysis framework that incorporates the biological relationships among the platforms to identify genes whose expression is related to clinical outcomes in cancer. This integrated approach combines information across all platforms, leading to increased statistical power in finding these predictive genes, and further provides mechanistic information about the manner in which the gene affects the outcome. We demonstrate the advantages of the shrinkage estimation used by this approach through a simulation, and finally, we apply our method to a Glioblastoma Multiforme dataset and identify several genes potentially associated with the patients' survival. We find 12 positive prognostic markers associated with nine genes and 13 negative prognostic markers associated with nine genes. </p>\",\"PeriodicalId\":72957,\"journal\":{\"name\":\"EURASIP journal on bioinformatics & systems biology\",\"volume\":\"2013 1\",\"pages\":\"13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1687-4153-2013-13\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP journal on bioinformatics & systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1687-4153-2013-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP journal on bioinformatics & systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1687-4153-2013-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

:我们提出了使用分层贝叶斯分析框架整合多个基因组平台数据的方法,该框架结合了平台之间的生物学关系,以识别其表达与癌症临床结果相关的基因。这种综合方法结合了所有平台的信息,提高了发现这些预测基因的统计能力,并进一步提供了有关基因影响结果的机制信息。我们通过模拟证明了这种方法使用的收缩估计的优势,最后,我们将我们的方法应用于多型胶质母细胞瘤数据集,并确定了几个可能与患者生存相关的基因。我们发现12个阳性预后标记与9个基因相关,13个阴性预后标记与九个基因相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian methods for expression-based integration of various types of genomics data.

: We propose methods to integrate data across several genomic platforms using a hierarchical Bayesian analysis framework that incorporates the biological relationships among the platforms to identify genes whose expression is related to clinical outcomes in cancer. This integrated approach combines information across all platforms, leading to increased statistical power in finding these predictive genes, and further provides mechanistic information about the manner in which the gene affects the outcome. We demonstrate the advantages of the shrinkage estimation used by this approach through a simulation, and finally, we apply our method to a Glioblastoma Multiforme dataset and identify several genes potentially associated with the patients' survival. We find 12 positive prognostic markers associated with nine genes and 13 negative prognostic markers associated with nine genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data. On biometric systems: electrocardiogram Gaussianity and data synthesis. BCC-NER: bidirectional, contextual clues named entity tagger for gene/protein mention recognition. Review of stochastic hybrid systems with applications in biological systems modeling and analysis. Bayesian inference for biomarker discovery in proteomics: an analytic solution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1