在含山梨醇改性纤维素的浸没培养基中青霉生产纤维素酶和木聚糖酶。

Q2 Biochemistry, Genetics and Molecular Biology Enzyme Research Pub Date : 2013-01-01 Epub Date: 2013-08-22 DOI:10.1155/2013/240219
Carla Eliana Todero Ritter, Marli Camassola, Denise Zampieri, Mauricio Moura Silveira, Aldo José Pinheiro Dillon
{"title":"在含山梨醇改性纤维素的浸没培养基中青霉生产纤维素酶和木聚糖酶。","authors":"Carla Eliana Todero Ritter,&nbsp;Marli Camassola,&nbsp;Denise Zampieri,&nbsp;Mauricio Moura Silveira,&nbsp;Aldo José Pinheiro Dillon","doi":"10.1155/2013/240219","DOIUrl":null,"url":null,"abstract":"<p><p>The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v) sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v) soy bran; 0.1% (w/v) wheat bran; and a solution of salts. The highest filter paper activity (FPA) (1.95  ±  0.04 IU·mL(-1)) was obtained on the seventh day in the medium containing 0.5% (w/v) sorbitol and 0.5% (w/v) cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day (9.99 ± 0.75 IU·mL(-1)) in the medium containing 0.75% (w/v) sorbitol and 0.75% (w/v) cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v) sorbitol and 0.25% (w/v) cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/240219","citationCount":"38","resultStr":"{\"title\":\"Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol.\",\"authors\":\"Carla Eliana Todero Ritter,&nbsp;Marli Camassola,&nbsp;Denise Zampieri,&nbsp;Mauricio Moura Silveira,&nbsp;Aldo José Pinheiro Dillon\",\"doi\":\"10.1155/2013/240219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v) sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v) soy bran; 0.1% (w/v) wheat bran; and a solution of salts. The highest filter paper activity (FPA) (1.95  ±  0.04 IU·mL(-1)) was obtained on the seventh day in the medium containing 0.5% (w/v) sorbitol and 0.5% (w/v) cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day (9.99 ± 0.75 IU·mL(-1)) in the medium containing 0.75% (w/v) sorbitol and 0.75% (w/v) cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v) sorbitol and 0.25% (w/v) cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems. </p>\",\"PeriodicalId\":11835,\"journal\":{\"name\":\"Enzyme Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/240219\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/240219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/240219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/8/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 38

摘要

本文研究了利用山梨糖醇作为可溶性碳源,与纤维素结合,在青霉9A02S1的深层培养中产生纤维素酶和木聚糖酶。由于纤维素是一种不溶性碳源,在纤维素酶的生产中,存在一些流变学和氧传递的问题。在培养过程中,不同时间分别添加0、0.25、0.5、0.75和1% (w/v)山梨糖醇和纤维素组成的培养基;0.2% (w/v)大豆麸;0.1% (w/v)麦麸;还有盐溶液。在培养24 h后,添加0.5% (w/v)山梨醇和0.5% (w/v)纤维素的培养基中,第7天滤纸活性(FPA)最高,为1.95±0.04 IU·mL(-1)。在添加0.75% (w/v)山梨醇和0.75% (w/v)纤维素的培养基中,CMCases在培养12 h后第6天达到活性峰值(9.99±0.75 IU·mL(-1))。木聚糖酶在培养36 h后添加0.75% (w/v)山梨醇和0.25% (w/v)纤维素的培养基中活性最高。这种策略可以降低纤维素浓度,高浓度的纤维素会引起流变和氧转移问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol.

The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v) sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v) soy bran; 0.1% (w/v) wheat bran; and a solution of salts. The highest filter paper activity (FPA) (1.95  ±  0.04 IU·mL(-1)) was obtained on the seventh day in the medium containing 0.5% (w/v) sorbitol and 0.5% (w/v) cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day (9.99 ± 0.75 IU·mL(-1)) in the medium containing 0.75% (w/v) sorbitol and 0.75% (w/v) cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v) sorbitol and 0.25% (w/v) cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enzyme Research
Enzyme Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Isolation of Cellulose Degrading Fungi from Decaying Banana Pseudostem and Strelitzia alba Acetylcholinesterases from Leaf-Cutting ant Atta sexdens: Purification, Characterization, and Capillary Reactors for On-Flow Assays Lipolytic Enzymes with Hydrolytic and Esterification Activities Produced by Filamentous Fungi Isolated from Decomposition Leaves in an Aquatic Environment. Enzymatic Conversion of RBCs by α-N-Acetylgalactosaminidase from Spirosoma linguale. Thermostable Cellulases from the Yeast Trichosporon sp.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1