Hatem Sallam, Ibrahim El-Serafi, Laurent Meijer, Moustapha Hassan
{"title":"细胞周期蛋白依赖性激酶抑制剂- cr8 -在小鼠体内的药代动力学和生物分布。","authors":"Hatem Sallam, Ibrahim El-Serafi, Laurent Meijer, Moustapha Hassan","doi":"10.1186/2050-6511-14-50","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CR8 is a second generation inhibitor of cyclin-dependent kinases derived from roscovitine. CR8 was shown to be 50-100 fold more potent than roscovitine in inducing apoptosis in different tumor cell lines. In the present investigation, we have established an analytical method for the quantification of CR8 in biological samples and evaluated its bioavailability, biodistribution and pharmacokinetics in mice.</p><p><strong>Methods: </strong>A liquid chromatography method utilizing UV-detection was used for the determination of CR8. CR8 was administered either orally (100 mg/kg) or i.v. (50 mg/kg) and the animals were sacrificed at different time points. Blood samples and organs were collected, after which the pharmacokinetic parameters were calculated for plasma and organs.</p><p><strong>Results: </strong>CR8 was eluted at 5 minutes in the high performance liquid chromatography system used. The LLOQ detection was 0.10 μg/ml and linearity was observed within the 0.10-10 μg/ml range (r² > 0.998). The accuracy and precision were >86%, while the recovery from plasma was >95%. CR8 was stable for 2 months at room temperature in both solution and plasma. CR8 pharmacokinetics was fitted to a two-compartment open model after oral administration and to a one compartment model after i.v. injection. The elimination half-life was about 3 hours. Organ exposure to CR8 (expressed as % AUC organ vs. AUC plasma) was highest in liver (205%), adipose tissue (188%) and kidney (150%) and low in bone marrow (30%) and brain (15%) as compared to plasma. The oral bioavailability of CR8 was found to be essentially 100%.</p><p><strong>Conclusions: </strong>We have developed a rapid and simple method for the analysis of CR8. CR8 pharmacokinetics pattern showed 100% bioavailability, long half-life and limited distribution to brain and bone marrow, which may allow systemic exposure higher than the IC₅₀ reported for cell death in tumor cell lines. CR8 displays favorable pharmacological properties and is therefore a good candidate for future clinical studies.</p>","PeriodicalId":48846,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"14 ","pages":"50"},"PeriodicalIF":2.9000,"publicationDate":"2013-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2050-6511-14-50","citationCount":"9","resultStr":"{\"title\":\"Pharmacokinetics and biodistribution of the cyclin-dependent kinase inhibitor -CR8- in mice.\",\"authors\":\"Hatem Sallam, Ibrahim El-Serafi, Laurent Meijer, Moustapha Hassan\",\"doi\":\"10.1186/2050-6511-14-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>CR8 is a second generation inhibitor of cyclin-dependent kinases derived from roscovitine. CR8 was shown to be 50-100 fold more potent than roscovitine in inducing apoptosis in different tumor cell lines. In the present investigation, we have established an analytical method for the quantification of CR8 in biological samples and evaluated its bioavailability, biodistribution and pharmacokinetics in mice.</p><p><strong>Methods: </strong>A liquid chromatography method utilizing UV-detection was used for the determination of CR8. CR8 was administered either orally (100 mg/kg) or i.v. (50 mg/kg) and the animals were sacrificed at different time points. Blood samples and organs were collected, after which the pharmacokinetic parameters were calculated for plasma and organs.</p><p><strong>Results: </strong>CR8 was eluted at 5 minutes in the high performance liquid chromatography system used. The LLOQ detection was 0.10 μg/ml and linearity was observed within the 0.10-10 μg/ml range (r² > 0.998). The accuracy and precision were >86%, while the recovery from plasma was >95%. CR8 was stable for 2 months at room temperature in both solution and plasma. CR8 pharmacokinetics was fitted to a two-compartment open model after oral administration and to a one compartment model after i.v. injection. The elimination half-life was about 3 hours. Organ exposure to CR8 (expressed as % AUC organ vs. AUC plasma) was highest in liver (205%), adipose tissue (188%) and kidney (150%) and low in bone marrow (30%) and brain (15%) as compared to plasma. The oral bioavailability of CR8 was found to be essentially 100%.</p><p><strong>Conclusions: </strong>We have developed a rapid and simple method for the analysis of CR8. CR8 pharmacokinetics pattern showed 100% bioavailability, long half-life and limited distribution to brain and bone marrow, which may allow systemic exposure higher than the IC₅₀ reported for cell death in tumor cell lines. CR8 displays favorable pharmacological properties and is therefore a good candidate for future clinical studies.</p>\",\"PeriodicalId\":48846,\"journal\":{\"name\":\"BMC Pharmacology & Toxicology\",\"volume\":\"14 \",\"pages\":\"50\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2013-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2050-6511-14-50\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pharmacology & Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2050-6511-14-50\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2050-6511-14-50","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Pharmacokinetics and biodistribution of the cyclin-dependent kinase inhibitor -CR8- in mice.
Background: CR8 is a second generation inhibitor of cyclin-dependent kinases derived from roscovitine. CR8 was shown to be 50-100 fold more potent than roscovitine in inducing apoptosis in different tumor cell lines. In the present investigation, we have established an analytical method for the quantification of CR8 in biological samples and evaluated its bioavailability, biodistribution and pharmacokinetics in mice.
Methods: A liquid chromatography method utilizing UV-detection was used for the determination of CR8. CR8 was administered either orally (100 mg/kg) or i.v. (50 mg/kg) and the animals were sacrificed at different time points. Blood samples and organs were collected, after which the pharmacokinetic parameters were calculated for plasma and organs.
Results: CR8 was eluted at 5 minutes in the high performance liquid chromatography system used. The LLOQ detection was 0.10 μg/ml and linearity was observed within the 0.10-10 μg/ml range (r² > 0.998). The accuracy and precision were >86%, while the recovery from plasma was >95%. CR8 was stable for 2 months at room temperature in both solution and plasma. CR8 pharmacokinetics was fitted to a two-compartment open model after oral administration and to a one compartment model after i.v. injection. The elimination half-life was about 3 hours. Organ exposure to CR8 (expressed as % AUC organ vs. AUC plasma) was highest in liver (205%), adipose tissue (188%) and kidney (150%) and low in bone marrow (30%) and brain (15%) as compared to plasma. The oral bioavailability of CR8 was found to be essentially 100%.
Conclusions: We have developed a rapid and simple method for the analysis of CR8. CR8 pharmacokinetics pattern showed 100% bioavailability, long half-life and limited distribution to brain and bone marrow, which may allow systemic exposure higher than the IC₅₀ reported for cell death in tumor cell lines. CR8 displays favorable pharmacological properties and is therefore a good candidate for future clinical studies.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.