泊松分布下 RNA-seq 数据差异表达分析的样本量计算

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2013-01-01 Epub Date: 2013-09-30 DOI:10.1504/IJCBDD.2013.056830
Chung-I Li, Pei-Fang Su, Yan Guo, Yu Shyr
{"title":"泊松分布下 RNA-seq 数据差异表达分析的样本量计算","authors":"Chung-I Li, Pei-Fang Su, Yan Guo, Yu Shyr","doi":"10.1504/IJCBDD.2013.056830","DOIUrl":null,"url":null,"abstract":"<p><p>Sample size determination is an important issue in the experimental design of biomedical research. Because of the complexity of RNA-seq experiments, however, the field currently lacks a sample size method widely applicable to differential expression studies utilising RNA-seq technology. In this report, we propose several methods for sample size calculation for single-gene differential expression analysis of RNA-seq data under Poisson distribution. These methods are then extended to multiple genes, with consideration for addressing the multiple testing problem by controlling false discovery rate. Moreover, most of the proposed methods allow for closed-form sample size formulas with specification of the desired minimum fold change and minimum average read count, and thus are not computationally intensive. Simulation studies to evaluate the performance of the proposed sample size formulas are presented; the results indicate that our methods work well, with achievement of desired power. Finally, our sample size calculation methods are applied to three real RNA-seq data sets. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"6 4","pages":"358-75"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874726/pdf/nihms536263.pdf","citationCount":"0","resultStr":"{\"title\":\"Sample size calculation for differential expression analysis of RNA-seq data under Poisson distribution.\",\"authors\":\"Chung-I Li, Pei-Fang Su, Yan Guo, Yu Shyr\",\"doi\":\"10.1504/IJCBDD.2013.056830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sample size determination is an important issue in the experimental design of biomedical research. Because of the complexity of RNA-seq experiments, however, the field currently lacks a sample size method widely applicable to differential expression studies utilising RNA-seq technology. In this report, we propose several methods for sample size calculation for single-gene differential expression analysis of RNA-seq data under Poisson distribution. These methods are then extended to multiple genes, with consideration for addressing the multiple testing problem by controlling false discovery rate. Moreover, most of the proposed methods allow for closed-form sample size formulas with specification of the desired minimum fold change and minimum average read count, and thus are not computationally intensive. Simulation studies to evaluate the performance of the proposed sample size formulas are presented; the results indicate that our methods work well, with achievement of desired power. Finally, our sample size calculation methods are applied to three real RNA-seq data sets. </p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"6 4\",\"pages\":\"358-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874726/pdf/nihms536263.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2013.056830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2013.056830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/9/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

确定样本大小是生物医学研究实验设计中的一个重要问题。然而,由于 RNA-seq 实验的复杂性,该领域目前缺乏一种广泛适用于利用 RNA-seq 技术进行差异表达研究的样本量计算方法。在本报告中,我们提出了几种在泊松分布条件下对 RNA-seq 数据进行单基因差异表达分析的样本量计算方法。然后将这些方法扩展到多基因,并考虑通过控制误发现率来解决多重检验问题。此外,所提出的大多数方法都可以通过指定所需的最小折合变化和最小平均读数,得出闭式样本大小公式,因此计算量不大。我们还介绍了评估所提样本量公式性能的模拟研究;结果表明,我们的方法运行良好,达到了预期的功率。最后,我们将样本量计算方法应用于三个真实的 RNA-seq 数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sample size calculation for differential expression analysis of RNA-seq data under Poisson distribution.

Sample size determination is an important issue in the experimental design of biomedical research. Because of the complexity of RNA-seq experiments, however, the field currently lacks a sample size method widely applicable to differential expression studies utilising RNA-seq technology. In this report, we propose several methods for sample size calculation for single-gene differential expression analysis of RNA-seq data under Poisson distribution. These methods are then extended to multiple genes, with consideration for addressing the multiple testing problem by controlling false discovery rate. Moreover, most of the proposed methods allow for closed-form sample size formulas with specification of the desired minimum fold change and minimum average read count, and thus are not computationally intensive. Simulation studies to evaluate the performance of the proposed sample size formulas are presented; the results indicate that our methods work well, with achievement of desired power. Finally, our sample size calculation methods are applied to three real RNA-seq data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1