SN算法:分析临床时间数据,挖掘周期模式和即将发生的预兆。

Dipankar Sengupta, Pradeep K Naik
{"title":"SN算法:分析临床时间数据,挖掘周期模式和即将发生的预兆。","authors":"Dipankar Sengupta,&nbsp;Pradeep K Naik","doi":"10.1186/2043-9113-3-24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>EHR (Electronic Health Record) system has led to development of specialized form of clinical databases which enable storage of information in temporal prospective. It has been a big challenge for mining this form of clinical data considering varied temporal points. This study proposes a conjoined solution to analyze the clinical parameters akin to a disease. We have used \"association rule mining algorithm\" to discover association rules among clinical parameters that can be augmented with the disease. Furthermore, we have proposed a new algorithm, SN algorithm, to map clinical parameters along with a disease state at various temporal points.</p><p><strong>Result: </strong>SN algorithm is based on Jacobian approach, which augurs the state of a disease 'Sn' at a given temporal point 'Tn' by mapping the derivatives with the temporal point 'T0', whose state of disease 'S0' is known. The predictive ability of the proposed algorithm is evaluated in a temporal clinical data set of brain tumor patients. We have obtained a very high prediction accuracy of ~97% for a brain tumor state 'Sn' for any temporal point 'Tn'.</p><p><strong>Conclusion: </strong>The results indicate that the methodology followed may be of good value to the diagnostic procedure, especially for analyzing temporal form of clinical data.</p>","PeriodicalId":73663,"journal":{"name":"Journal of clinical bioinformatics","volume":" ","pages":"24"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2043-9113-3-24","citationCount":"9","resultStr":"{\"title\":\"SN algorithm: analysis of temporal clinical data for mining periodic patterns and impending augury.\",\"authors\":\"Dipankar Sengupta,&nbsp;Pradeep K Naik\",\"doi\":\"10.1186/2043-9113-3-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>EHR (Electronic Health Record) system has led to development of specialized form of clinical databases which enable storage of information in temporal prospective. It has been a big challenge for mining this form of clinical data considering varied temporal points. This study proposes a conjoined solution to analyze the clinical parameters akin to a disease. We have used \\\"association rule mining algorithm\\\" to discover association rules among clinical parameters that can be augmented with the disease. Furthermore, we have proposed a new algorithm, SN algorithm, to map clinical parameters along with a disease state at various temporal points.</p><p><strong>Result: </strong>SN algorithm is based on Jacobian approach, which augurs the state of a disease 'Sn' at a given temporal point 'Tn' by mapping the derivatives with the temporal point 'T0', whose state of disease 'S0' is known. The predictive ability of the proposed algorithm is evaluated in a temporal clinical data set of brain tumor patients. We have obtained a very high prediction accuracy of ~97% for a brain tumor state 'Sn' for any temporal point 'Tn'.</p><p><strong>Conclusion: </strong>The results indicate that the methodology followed may be of good value to the diagnostic procedure, especially for analyzing temporal form of clinical data.</p>\",\"PeriodicalId\":73663,\"journal\":{\"name\":\"Journal of clinical bioinformatics\",\"volume\":\" \",\"pages\":\"24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2043-9113-3-24\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2043-9113-3-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2043-9113-3-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

背景:EHR(电子健康记录)系统导致了临床数据库的特殊形式的发展,使信息存储在时间的前瞻性。考虑到不同的时间点,挖掘这种形式的临床数据一直是一个很大的挑战。本研究提出了一种用于分析类似于疾病的临床参数的联合解决方案。我们使用“关联规则挖掘算法”来发现临床参数之间的关联规则,这些关联规则可以随疾病而增强。此外,我们提出了一种新的算法,即SN算法,用于绘制临床参数和疾病在不同时间点的状态。结果:SN算法基于雅可比方法,通过将导数映射到已知疾病状态的时间点T0,来预测疾病SN在给定时间点Tn处的状态。在脑肿瘤患者的时间临床数据集中评估了所提出算法的预测能力。我们已经获得了对任意时间点Tn的脑肿瘤状态Sn的非常高的预测精度~97%。结论:所采用的方法对诊断程序,特别是分析临床资料的时间形式具有良好的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SN algorithm: analysis of temporal clinical data for mining periodic patterns and impending augury.

Background: EHR (Electronic Health Record) system has led to development of specialized form of clinical databases which enable storage of information in temporal prospective. It has been a big challenge for mining this form of clinical data considering varied temporal points. This study proposes a conjoined solution to analyze the clinical parameters akin to a disease. We have used "association rule mining algorithm" to discover association rules among clinical parameters that can be augmented with the disease. Furthermore, we have proposed a new algorithm, SN algorithm, to map clinical parameters along with a disease state at various temporal points.

Result: SN algorithm is based on Jacobian approach, which augurs the state of a disease 'Sn' at a given temporal point 'Tn' by mapping the derivatives with the temporal point 'T0', whose state of disease 'S0' is known. The predictive ability of the proposed algorithm is evaluated in a temporal clinical data set of brain tumor patients. We have obtained a very high prediction accuracy of ~97% for a brain tumor state 'Sn' for any temporal point 'Tn'.

Conclusion: The results indicate that the methodology followed may be of good value to the diagnostic procedure, especially for analyzing temporal form of clinical data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical research informatics (CRI): overview over new tools and services First Clinical Research Informatics (CRI) Solutions Day: advanced IT support from EU projects for clinical trials Mobile eHealth solution (ePRO) EHR4CR local workbench TRANSFoRm Data quality tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1