对来自 HapMap 项目的更大 SNP 数据集的分析证实,现代人的 ABO 血型基因 A 等位基因是 B 和 O 等位基因重组的后代。

International journal of evolutionary biology Pub Date : 2013-01-01 Epub Date: 2013-10-29 DOI:10.1155/2013/406209
Masaya Itou, Mitsuharu Sato, Takashi Kitano
{"title":"对来自 HapMap 项目的更大 SNP 数据集的分析证实,现代人的 ABO 血型基因 A 等位基因是 B 和 O 等位基因重组的后代。","authors":"Masaya Itou, Mitsuharu Sato, Takashi Kitano","doi":"10.1155/2013/406209","DOIUrl":null,"url":null,"abstract":"<p><p>The human ABO blood group gene consists of three main alleles (A, B, and O) that encode a glycosyltransferase. The A and B alleles differ by two critical amino acids in exon 7, and the major O allele has a single nucleotide deletion (Δ261) in exon 6. Previous evolutionary studies have revealed that the A allele is the most ancient, B allele diverged from the A allele with two critical amino acid substitutions in exon 7, and the major O allele diverged from the A allele with Δ261 in exon 6. However, a recent phylogenetic network analysis study showed that the A allele of humans emerged through a recombination between the B and O alleles. In the previous study, a restricted dataset from only two populations was used. In this study, therefore, we used a large single nucleotide polymorphism (SNP) dataset from the HapMap Project. The results indicated that the A101-A201-O09 haplogroup was a recombinant lineage between the B and O haplotypes, containing the intact exon 6 from the B allele and the two critical A type sites in exon 7 from the major O allele. Its recombination point was assumed to be located just behind Δ261 in exon 6. </p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"406209"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830805/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of a Larger SNP Dataset from the HapMap Project Confirmed That the Modern Human A Allele of the ABO Blood Group Genes Is a Descendant of a Recombinant between B and O Alleles.\",\"authors\":\"Masaya Itou, Mitsuharu Sato, Takashi Kitano\",\"doi\":\"10.1155/2013/406209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human ABO blood group gene consists of three main alleles (A, B, and O) that encode a glycosyltransferase. The A and B alleles differ by two critical amino acids in exon 7, and the major O allele has a single nucleotide deletion (Δ261) in exon 6. Previous evolutionary studies have revealed that the A allele is the most ancient, B allele diverged from the A allele with two critical amino acid substitutions in exon 7, and the major O allele diverged from the A allele with Δ261 in exon 6. However, a recent phylogenetic network analysis study showed that the A allele of humans emerged through a recombination between the B and O alleles. In the previous study, a restricted dataset from only two populations was used. In this study, therefore, we used a large single nucleotide polymorphism (SNP) dataset from the HapMap Project. The results indicated that the A101-A201-O09 haplogroup was a recombinant lineage between the B and O haplotypes, containing the intact exon 6 from the B allele and the two critical A type sites in exon 7 from the major O allele. Its recombination point was assumed to be located just behind Δ261 in exon 6. </p>\",\"PeriodicalId\":73449,\"journal\":{\"name\":\"International journal of evolutionary biology\",\"volume\":\"2013 \",\"pages\":\"406209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830805/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of evolutionary biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/406209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of evolutionary biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/406209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/10/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类 ABO 血型基因由三个主要等位基因(A、B 和 O)组成,它们编码一种糖基转移酶。A 等位基因和 B 等位基因在第 7 号外显子上有两个关键氨基酸的差异,而主要的 O 等位基因在第 6 号外显子上有一个单核苷酸缺失(Δ261)。以往的进化研究表明,A 等位基因是最古老的,B 等位基因从 A 等位基因分化而来,在第 7 号外显子中有两个关键氨基酸的替换,而主要的 O 等位基因从 A 等位基因分化而来,在第 6 号外显子中有 Δ261。然而,最近的一项系统发生网络分析研究表明,人类的 A 等位基因是通过 B 等位基因和 O 等位基因之间的重组产生的。在之前的研究中,我们只使用了两个种群的有限数据集。因此,在本研究中,我们使用了来自 HapMap 项目的大型单核苷酸多态性(SNP)数据集。结果表明,A101-A201-O09单倍群是介于B和O单倍型之间的重组系,包含B等位基因完整的第6外显子和主要O等位基因第7外显子中的两个关键A型位点。其重组点被假定位于外显子 6 中Δ261 的后面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of a Larger SNP Dataset from the HapMap Project Confirmed That the Modern Human A Allele of the ABO Blood Group Genes Is a Descendant of a Recombinant between B and O Alleles.

The human ABO blood group gene consists of three main alleles (A, B, and O) that encode a glycosyltransferase. The A and B alleles differ by two critical amino acids in exon 7, and the major O allele has a single nucleotide deletion (Δ261) in exon 6. Previous evolutionary studies have revealed that the A allele is the most ancient, B allele diverged from the A allele with two critical amino acid substitutions in exon 7, and the major O allele diverged from the A allele with Δ261 in exon 6. However, a recent phylogenetic network analysis study showed that the A allele of humans emerged through a recombination between the B and O alleles. In the previous study, a restricted dataset from only two populations was used. In this study, therefore, we used a large single nucleotide polymorphism (SNP) dataset from the HapMap Project. The results indicated that the A101-A201-O09 haplogroup was a recombinant lineage between the B and O haplotypes, containing the intact exon 6 from the B allele and the two critical A type sites in exon 7 from the major O allele. Its recombination point was assumed to be located just behind Δ261 in exon 6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "A Survey of Eyespot Sexual Dimorphism across Nymphalid Butterflies". New Insights into the Effects of Several Environmental Parameters on the Relative Fitness of a Numerically Dominant Class of Evolved Niche Specialist The Challenges and Relevance of Exploring the Genetics of North Africa's “Barbary Lion” and the Conservation of Putative Descendants in Captivity The Heavy Links between Geological Events and Vascular Plants Evolution: A Brief Outline An Evolutionary Perspective of Nutrition and Inflammation as Mechanisms of Cardiovascular Disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1