使用同一探测器的高分辨率发射和透射成像。

Ashish S Panse, A Jain, W Wang, R Yao, D R Bednarek, S Rudin
{"title":"使用同一探测器的高分辨率发射和透射成像。","authors":"Ashish S Panse,&nbsp;A Jain,&nbsp;W Wang,&nbsp;R Yao,&nbsp;D R Bednarek,&nbsp;S Rudin","doi":"10.1109/NSSMIC.2010.5874431","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate the capability of one detector, the Micro-Angiographic Fluoroscope (MAF) detector, to image for two types of applications: nuclear medicine imaging and radiography. The MAF has 1024 × 1024 pixels with an effective pixel size of 35 microns and is capable of real-time imaging at 30 fps. It has a CCD camera coupled by a fiber-optic taper to a light image intensifier (LII) viewing a 300-micron thick CsI phosphor. The large variable gain of the LII provides quantum-limited operation with little additive instrumentation noise and enables operation in both energy-integrating (EI) and sensitive low-exposure single photon counting (SPC) modes. We used the EI mode to take a radiograph, and the SPC mode to image a custom phantom filled with 1 mCi of I-125. The phantom is made of hot rods with diameters ranging from 0.9 mm to 2.3 mm. A 1 mm diameter parallel hole, medium energy gamma camera collimator was placed between the phantom and the MAF and was moved multiple times at equal intervals in random directions to eliminate the grid pattern corresponding to the collimator septa. Data was acquired at 20 fps. Two algorithms to localize the events were used: 1) simple threshold and 2) a weighted centroid method. Although all the hot rods could be clearly identified, the image generated with the simple threshold method shows more blurring than that with the weighted centroid method. With the diffuse cluster of pixels from each single detection event localized to a single pixel, the weighted centroid method shows improved spatial resolution. A radiograph of the phantom was taken with the same MAF in EI mode without the collimator. It shows clear structural details of the rods. Compared to the radiograph, the sharpness of the emission image is limited by the collimator resolution and could be improved by optimized collimator design. This study demonstrated that the same MAF detector can be used in both radioisotope and x-ray imaging, combining the benefits of each.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2010 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2010.5874431","citationCount":"1","resultStr":"{\"title\":\"High Resolution Emission and Transmission Imaging Using the Same Detector.\",\"authors\":\"Ashish S Panse,&nbsp;A Jain,&nbsp;W Wang,&nbsp;R Yao,&nbsp;D R Bednarek,&nbsp;S Rudin\",\"doi\":\"10.1109/NSSMIC.2010.5874431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We demonstrate the capability of one detector, the Micro-Angiographic Fluoroscope (MAF) detector, to image for two types of applications: nuclear medicine imaging and radiography. The MAF has 1024 × 1024 pixels with an effective pixel size of 35 microns and is capable of real-time imaging at 30 fps. It has a CCD camera coupled by a fiber-optic taper to a light image intensifier (LII) viewing a 300-micron thick CsI phosphor. The large variable gain of the LII provides quantum-limited operation with little additive instrumentation noise and enables operation in both energy-integrating (EI) and sensitive low-exposure single photon counting (SPC) modes. We used the EI mode to take a radiograph, and the SPC mode to image a custom phantom filled with 1 mCi of I-125. The phantom is made of hot rods with diameters ranging from 0.9 mm to 2.3 mm. A 1 mm diameter parallel hole, medium energy gamma camera collimator was placed between the phantom and the MAF and was moved multiple times at equal intervals in random directions to eliminate the grid pattern corresponding to the collimator septa. Data was acquired at 20 fps. Two algorithms to localize the events were used: 1) simple threshold and 2) a weighted centroid method. Although all the hot rods could be clearly identified, the image generated with the simple threshold method shows more blurring than that with the weighted centroid method. With the diffuse cluster of pixels from each single detection event localized to a single pixel, the weighted centroid method shows improved spatial resolution. A radiograph of the phantom was taken with the same MAF in EI mode without the collimator. It shows clear structural details of the rods. Compared to the radiograph, the sharpness of the emission image is limited by the collimator resolution and could be improved by optimized collimator design. This study demonstrated that the same MAF detector can be used in both radioisotope and x-ray imaging, combining the benefits of each.</p>\",\"PeriodicalId\":73298,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"volume\":\"2010 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/NSSMIC.2010.5874431\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2010.5874431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2010.5874431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们展示了一种检测器的能力,微血管成像荧光镜(MAF)检测器,成像两种类型的应用:核医学成像和放射照相。MAF具有1024 × 1024像素,有效像素尺寸为35微米,能够以30 fps的速度实时成像。它有一个CCD相机,通过光纤锥形耦合到一个光图像增强器(LII),观察300微米厚的CsI荧光粉。LII的大可变增益提供了量子限制的操作,几乎没有附加的仪器噪声,并且可以在能量积分(EI)和敏感的低曝光单光子计数(SPC)模式下运行。我们使用EI模式拍摄x光片,并使用SPC模式对填充了1 mCi I-125的定制幻影进行成像。幻影由直径从0.9毫米到2.3毫米的热棒制成。在模体和MAF之间放置一个直径1mm的平行孔,中能量伽马相机准直器,并在随机方向上以等间隔移动多次,以消除准直器间隔对应的网格图案。数据采集速度为20fps。采用两种算法进行事件定位:1)简单阈值法和2)加权质心法。虽然所有的热棒都能被清晰地识别出来,但简单阈值法生成的图像比加权质心法产生的图像模糊程度更大。加权质心方法通过将单个检测事件的漫射聚类像素定位到单个像素,提高了空间分辨率。用相同的MAF在EI模式下拍摄了幻像的x线片,没有准直器。它清晰地显示了棒的结构细节。与射线照相相比,发射图像的清晰度受到准直器分辨率的限制,可以通过优化准直器设计来提高其清晰度。这项研究表明,相同的MAF探测器可以同时用于放射性同位素和x射线成像,结合了两者的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Resolution Emission and Transmission Imaging Using the Same Detector.

We demonstrate the capability of one detector, the Micro-Angiographic Fluoroscope (MAF) detector, to image for two types of applications: nuclear medicine imaging and radiography. The MAF has 1024 × 1024 pixels with an effective pixel size of 35 microns and is capable of real-time imaging at 30 fps. It has a CCD camera coupled by a fiber-optic taper to a light image intensifier (LII) viewing a 300-micron thick CsI phosphor. The large variable gain of the LII provides quantum-limited operation with little additive instrumentation noise and enables operation in both energy-integrating (EI) and sensitive low-exposure single photon counting (SPC) modes. We used the EI mode to take a radiograph, and the SPC mode to image a custom phantom filled with 1 mCi of I-125. The phantom is made of hot rods with diameters ranging from 0.9 mm to 2.3 mm. A 1 mm diameter parallel hole, medium energy gamma camera collimator was placed between the phantom and the MAF and was moved multiple times at equal intervals in random directions to eliminate the grid pattern corresponding to the collimator septa. Data was acquired at 20 fps. Two algorithms to localize the events were used: 1) simple threshold and 2) a weighted centroid method. Although all the hot rods could be clearly identified, the image generated with the simple threshold method shows more blurring than that with the weighted centroid method. With the diffuse cluster of pixels from each single detection event localized to a single pixel, the weighted centroid method shows improved spatial resolution. A radiograph of the phantom was taken with the same MAF in EI mode without the collimator. It shows clear structural details of the rods. Compared to the radiograph, the sharpness of the emission image is limited by the collimator resolution and could be improved by optimized collimator design. This study demonstrated that the same MAF detector can be used in both radioisotope and x-ray imaging, combining the benefits of each.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ablation Study of Diffusion Model with Transformer Backbone for Low-count PET Denoising. Point-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. Calibration Methodology of an Edgeless PET System Prototype. Tensor Tomography of Dark Field Scatter using X-ray Interferometry with Bi-prisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1