阿尔茨海默病的内质网应激:扭转天平?

Kristina Endres, Sven Reinhardt
{"title":"阿尔茨海默病的内质网应激:扭转天平?","authors":"Kristina Endres,&nbsp;Sven Reinhardt","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic mechanisms of Alzheimer's disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons. Dyshomeostasis of Amyloid Precursor Protein (APP) cleavage, energy metabolism or kinase/phosphatase activity due to stressors has been suggested as a trigger of the disease. One way for cells to escape stress based on dysfunction of ER is the unfolded protein response - the UPR. This pathway is composed out of three different routes that differ in proteins involved, targets and consequences for cell fate: activation of transmembrane ER resident kinases IRE1-alpha and PERK or monomerization of membrane-anchored activating transcription factor 6 (ATF6) induce activation of versatile transcription factors (XBP-1, eIF2-alpha/ATF4 and ATF6 P50). These bind to specific DNA sequences on target gene promoters and on one hand attenuate general ER-prone protein synthesis and on the other equip the cell with tools to de-stress. If cells fail in stress compensation, this signaling also is able to evoke apoptosis. In this review we summarized knowledge on how APP processing and phosphorylation of tau might be influenced by ER-stress signaling. In addition, we depicted the effects UPR itself seems to have on molecules closely related to AD and describe what is known about UPR in AD animal models as well as in human patients. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852565/pdf/ajnd0002-0247.pdf","citationCount":"0","resultStr":"{\"title\":\"ER-stress in Alzheimer's disease: turning the scale?\",\"authors\":\"Kristina Endres,&nbsp;Sven Reinhardt\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathogenic mechanisms of Alzheimer's disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons. Dyshomeostasis of Amyloid Precursor Protein (APP) cleavage, energy metabolism or kinase/phosphatase activity due to stressors has been suggested as a trigger of the disease. One way for cells to escape stress based on dysfunction of ER is the unfolded protein response - the UPR. This pathway is composed out of three different routes that differ in proteins involved, targets and consequences for cell fate: activation of transmembrane ER resident kinases IRE1-alpha and PERK or monomerization of membrane-anchored activating transcription factor 6 (ATF6) induce activation of versatile transcription factors (XBP-1, eIF2-alpha/ATF4 and ATF6 P50). These bind to specific DNA sequences on target gene promoters and on one hand attenuate general ER-prone protein synthesis and on the other equip the cell with tools to de-stress. If cells fail in stress compensation, this signaling also is able to evoke apoptosis. In this review we summarized knowledge on how APP processing and phosphorylation of tau might be influenced by ER-stress signaling. In addition, we depicted the effects UPR itself seems to have on molecules closely related to AD and describe what is known about UPR in AD animal models as well as in human patients. </p>\",\"PeriodicalId\":72170,\"journal\":{\"name\":\"American journal of neurodegenerative disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852565/pdf/ajnd0002-0247.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of neurodegenerative disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of neurodegenerative disease","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)的致病机制被深入研究,因为它是最常见的痴呆症形式,并因其成本和社会需求而给社会带来负担。虽然关键分子,如a - β肽和tau蛋白在几十年前就被发现了,但是什么导致了这种疾病的零星表现,仍然是一个谜。a- β肽的合成和tau蛋白的磷酸化构成了正常的细胞功能,原则上在健康和痴呆症患者中都有发生。由于应激源引起的淀粉样前体蛋白(APP)分裂、能量代谢或激酶/磷酸酶活性失衡已被认为是该疾病的触发因素。细胞逃避基于内质网功能障碍的应激的一种方法是未折叠蛋白反应- UPR。该途径由三种不同的途径组成,它们所涉及的蛋白质、目标和对细胞命运的影响各不相同:跨膜内质网驻留激酶ire1 - α和PERK的激活或膜锚定激活转录因子6 (ATF6)的单聚化诱导多种转录因子(XBP-1、eif2 - α /ATF4和ATF6 P50)的激活。它们与目标基因启动子上的特定DNA序列结合,一方面减弱一般er倾向蛋白的合成,另一方面为细胞提供减压工具。如果细胞在应激补偿中失败,该信号也能够引起细胞凋亡。在这篇综述中,我们总结了APP加工和tau磷酸化如何受到内质网应激信号的影响。此外,我们描述了UPR本身似乎对与AD密切相关的分子的影响,并描述了AD动物模型和人类患者中UPR的已知情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ER-stress in Alzheimer's disease: turning the scale?

Pathogenic mechanisms of Alzheimer's disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons. Dyshomeostasis of Amyloid Precursor Protein (APP) cleavage, energy metabolism or kinase/phosphatase activity due to stressors has been suggested as a trigger of the disease. One way for cells to escape stress based on dysfunction of ER is the unfolded protein response - the UPR. This pathway is composed out of three different routes that differ in proteins involved, targets and consequences for cell fate: activation of transmembrane ER resident kinases IRE1-alpha and PERK or monomerization of membrane-anchored activating transcription factor 6 (ATF6) induce activation of versatile transcription factors (XBP-1, eIF2-alpha/ATF4 and ATF6 P50). These bind to specific DNA sequences on target gene promoters and on one hand attenuate general ER-prone protein synthesis and on the other equip the cell with tools to de-stress. If cells fail in stress compensation, this signaling also is able to evoke apoptosis. In this review we summarized knowledge on how APP processing and phosphorylation of tau might be influenced by ER-stress signaling. In addition, we depicted the effects UPR itself seems to have on molecules closely related to AD and describe what is known about UPR in AD animal models as well as in human patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exceptionally giant neglected sacral chordoma in a post-poliotic residual paralysis patient - a rare case scenario. Evaluation of willingness to obtain of Covid 19 vaccine in patients with multiple sclerosis. Short segment posterior fixation of unstable thoracolumbar vertebral fractures with fractured vertebra augmentation with intermediate pedicle screw - a clinicoradiological analysis. Single-cell RNA sequencing analysis and Alzheimer's disease: a bibliometric analysis. Leveraging genetic diversity to understand monogenic Parkinson's disease's landscape in AfrAbia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1