看似不相关的变化系数非参数回归模型的推断。

Jinhong You, Haibo Zhou
{"title":"看似不相关的变化系数非参数回归模型的推断。","authors":"Jinhong You, Haibo Zhou","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is concerned with the inference of seemingly unrelated (SU) varying-coefficient nonparametric regression models. We propose an estimation for the unknown coefficient functions, which is an extension of the two-stage procedure proposed by Linton, <i>et al.</i> (2004) in the longitudinal data framework where they focused on purely nonparametric regression. We show the resulted estimators are asymptotically normal and more efficient than those based on only the individual regression equation even when the error covariance matrix is homogeneous. Another focus of this paper is to extend the generalized likelihood ratio technique developed by Fan, Zhang and Zhang (2001) for testing the goodness of fit of models to the setting of SU regression. A wild block bootstrap based method is used to compute <i>p</i>-value of the test. Some simulation studies are given in support of the asymptotics. A real data set from an ongoing environmental epidemiologic study is used to illustrate the proposed procedures.</p>","PeriodicalId":89573,"journal":{"name":"International journal of statistics and management system","volume":"5 1-2","pages":"59-83"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893667/pdf/nihms329684.pdf","citationCount":"0","resultStr":"{\"title\":\"Inference for Seemingly Unrelated Varying-Coefficient Nonparametric Regression Models.\",\"authors\":\"Jinhong You, Haibo Zhou\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper is concerned with the inference of seemingly unrelated (SU) varying-coefficient nonparametric regression models. We propose an estimation for the unknown coefficient functions, which is an extension of the two-stage procedure proposed by Linton, <i>et al.</i> (2004) in the longitudinal data framework where they focused on purely nonparametric regression. We show the resulted estimators are asymptotically normal and more efficient than those based on only the individual regression equation even when the error covariance matrix is homogeneous. Another focus of this paper is to extend the generalized likelihood ratio technique developed by Fan, Zhang and Zhang (2001) for testing the goodness of fit of models to the setting of SU regression. A wild block bootstrap based method is used to compute <i>p</i>-value of the test. Some simulation studies are given in support of the asymptotics. A real data set from an ongoing environmental epidemiologic study is used to illustrate the proposed procedures.</p>\",\"PeriodicalId\":89573,\"journal\":{\"name\":\"International journal of statistics and management system\",\"volume\":\"5 1-2\",\"pages\":\"59-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893667/pdf/nihms329684.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of statistics and management system\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and management system","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注看似不相关(SU)变化系数非参数回归模型的推断。我们提出了一种未知系数函数的估计方法,这是对 Linton 等人(2004 年)在纵向数据框架下提出的两阶段程序的扩展,他们将重点放在纯非参数回归上。我们证明,即使误差协方差矩阵是同质的,所得到的估计值也是渐近正态的,而且比那些仅基于单个回归方程的估计值更有效。本文的另一个重点是将 Fan、Zhang 和 Zhang(2001 年)开发的用于测试模型拟合度的广义似然比技术扩展到 SU 回归的环境中。本文采用了一种基于野生区块引导的方法来计算检验的 p 值。为支持渐近论,还进行了一些模拟研究。一个正在进行的环境流行病学研究的真实数据集被用来说明所建议的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference for Seemingly Unrelated Varying-Coefficient Nonparametric Regression Models.

This paper is concerned with the inference of seemingly unrelated (SU) varying-coefficient nonparametric regression models. We propose an estimation for the unknown coefficient functions, which is an extension of the two-stage procedure proposed by Linton, et al. (2004) in the longitudinal data framework where they focused on purely nonparametric regression. We show the resulted estimators are asymptotically normal and more efficient than those based on only the individual regression equation even when the error covariance matrix is homogeneous. Another focus of this paper is to extend the generalized likelihood ratio technique developed by Fan, Zhang and Zhang (2001) for testing the goodness of fit of models to the setting of SU regression. A wild block bootstrap based method is used to compute p-value of the test. Some simulation studies are given in support of the asymptotics. A real data set from an ongoing environmental epidemiologic study is used to illustrate the proposed procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inference for Seemingly Unrelated Varying-Coefficient Nonparametric Regression Models. Statistical Inference for Regression Models with Covariate Measurement Error and Auxiliary Information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1