{"title":"鸟叫声产生的物理学。","authors":"G B Mindlin","doi":"10.1080/00107514.2013.810852","DOIUrl":null,"url":null,"abstract":"<p><p>Human babies need to learn how to talk. The need of a tutor to achieve acceptable vocalizations is a feature that we share with a few species in the animal kingdom. Among those are Songbirds, which account for nearly half of the known bird species. For that reason, Songbirds have become an ideal animal model to study how a brain reconfigures itself during the process of learning a complex task. In the last years, neuroscientists have invested important resources in order to unveil the neural architecture involved in birdsong production and learning. Yet, behavior emerges from the interaction between a nervous system, a peripheral biomechanical architecture and environment, and therefore its study should be just as integrated. In particular, the physical study of the avian vocal organ can help to elucidate which features found in the song of birds are under direct control of specific neural instructions and which emerge from the biomechanics involved in its generation. This work describes recent advances in the study of the physics of birdsong production.</p>","PeriodicalId":50620,"journal":{"name":"Contemporary Physics","volume":"54 2","pages":"91-96"},"PeriodicalIF":3.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00107514.2013.810852","citationCount":"8","resultStr":"{\"title\":\"The Physics of Birdsong Production.\",\"authors\":\"G B Mindlin\",\"doi\":\"10.1080/00107514.2013.810852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human babies need to learn how to talk. The need of a tutor to achieve acceptable vocalizations is a feature that we share with a few species in the animal kingdom. Among those are Songbirds, which account for nearly half of the known bird species. For that reason, Songbirds have become an ideal animal model to study how a brain reconfigures itself during the process of learning a complex task. In the last years, neuroscientists have invested important resources in order to unveil the neural architecture involved in birdsong production and learning. Yet, behavior emerges from the interaction between a nervous system, a peripheral biomechanical architecture and environment, and therefore its study should be just as integrated. In particular, the physical study of the avian vocal organ can help to elucidate which features found in the song of birds are under direct control of specific neural instructions and which emerge from the biomechanics involved in its generation. This work describes recent advances in the study of the physics of birdsong production.</p>\",\"PeriodicalId\":50620,\"journal\":{\"name\":\"Contemporary Physics\",\"volume\":\"54 2\",\"pages\":\"91-96\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00107514.2013.810852\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/00107514.2013.810852\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00107514.2013.810852","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Human babies need to learn how to talk. The need of a tutor to achieve acceptable vocalizations is a feature that we share with a few species in the animal kingdom. Among those are Songbirds, which account for nearly half of the known bird species. For that reason, Songbirds have become an ideal animal model to study how a brain reconfigures itself during the process of learning a complex task. In the last years, neuroscientists have invested important resources in order to unveil the neural architecture involved in birdsong production and learning. Yet, behavior emerges from the interaction between a nervous system, a peripheral biomechanical architecture and environment, and therefore its study should be just as integrated. In particular, the physical study of the avian vocal organ can help to elucidate which features found in the song of birds are under direct control of specific neural instructions and which emerge from the biomechanics involved in its generation. This work describes recent advances in the study of the physics of birdsong production.
期刊介绍:
Contemporary Physics presents authoritative and lucid introductory review articles on important recent developments in physics. The articles are specially commissioned from experts in their field. The authors aim to review comprehensively the current state of their subject and place it within a broader context of contemporary research, industrial possibilities and applications in an accessible way.
The Journal is of particular use to undergraduates, teachers and lecturers and those starting postgraduate studies who wish to be introduced to a new area. Readers should be able to understand the review without reference to other material, although authors provide a full set of references so that those who wish to explore further can do so. The reviews can also be profitably read by all those who wish to keep abreast of the fields outside their own, or who need an accessible introduction to a new area.
Articles are written for a wide range of readers, whether they be physicists, physical scientists or engineers employed in higher education, teaching, industry or government.
Contemporary Physics also contains a major section devoted to standard book reviews and essay reviews which review books in the context of the general aspects of a field.