肥胖相关高血压:机制的新见解

Q3 Medicine Electrolyte and Blood Pressure Pub Date : 2013-12-01 Epub Date: 2013-12-31 DOI:10.5049/EBP.2013.11.2.46
Young Sun Kang
{"title":"肥胖相关高血压:机制的新见解","authors":"Young Sun Kang","doi":"10.5049/EBP.2013.11.2.46","DOIUrl":null,"url":null,"abstract":"<p><p>With excess nutrition, the burden of obesity is a growing problem worldwide. The imbalance between energy intake and expenditure leads to variable disorders as all major risk factors for cardiovascular disease. There are many hypothetical mechanisms to explain obesity-associated hypertension. Activation of the RAAS is a key contributing factor in obesity. Particularly, the RAAS in adipose tissue plays a crucial role in adipose tissue dysfunction and obesity-induced inflammation. The phenotypic changes of adipocytes occur into hypertrophy and an inflammatory response in an autocrine and paracrine manner to impair adipocyte function, including insulin signaling pathway. Adipose tissue produce and secretes several molecules such as leptin, resistin, adiponectin, and visfatin, as well as cytokines such as TNF-α, IL-6, MCP-1, and IL-1. These adipokines are stimulated via the intracellular signaling pathways that regulate inflammation of adipose tissue. Inflammation and oxidative stress in adipose tissue are important to interact with the microvascular endothelium in the mechanisms of obesity-associated hypertension. Increased microvascular resistance raises blood pressure. Therefore, a regulatory link between microvascular and perivascular adipose tissue inflammation and adipokine synthesis are provided to explain the mechanism of obesity-associated hypertension. </p>","PeriodicalId":35352,"journal":{"name":"Electrolyte and Blood Pressure","volume":"11 2","pages":"46-52"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5049/EBP.2013.11.2.46","citationCount":"124","resultStr":"{\"title\":\"Obesity associated hypertension: new insights into mechanism.\",\"authors\":\"Young Sun Kang\",\"doi\":\"10.5049/EBP.2013.11.2.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With excess nutrition, the burden of obesity is a growing problem worldwide. The imbalance between energy intake and expenditure leads to variable disorders as all major risk factors for cardiovascular disease. There are many hypothetical mechanisms to explain obesity-associated hypertension. Activation of the RAAS is a key contributing factor in obesity. Particularly, the RAAS in adipose tissue plays a crucial role in adipose tissue dysfunction and obesity-induced inflammation. The phenotypic changes of adipocytes occur into hypertrophy and an inflammatory response in an autocrine and paracrine manner to impair adipocyte function, including insulin signaling pathway. Adipose tissue produce and secretes several molecules such as leptin, resistin, adiponectin, and visfatin, as well as cytokines such as TNF-α, IL-6, MCP-1, and IL-1. These adipokines are stimulated via the intracellular signaling pathways that regulate inflammation of adipose tissue. Inflammation and oxidative stress in adipose tissue are important to interact with the microvascular endothelium in the mechanisms of obesity-associated hypertension. Increased microvascular resistance raises blood pressure. Therefore, a regulatory link between microvascular and perivascular adipose tissue inflammation and adipokine synthesis are provided to explain the mechanism of obesity-associated hypertension. </p>\",\"PeriodicalId\":35352,\"journal\":{\"name\":\"Electrolyte and Blood Pressure\",\"volume\":\"11 2\",\"pages\":\"46-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5049/EBP.2013.11.2.46\",\"citationCount\":\"124\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrolyte and Blood Pressure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5049/EBP.2013.11.2.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrolyte and Blood Pressure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5049/EBP.2013.11.2.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/12/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 124

摘要

随着营养过剩,肥胖负担在世界范围内成为一个日益严重的问题。能量摄入和消耗之间的不平衡导致各种疾病成为心血管疾病的所有主要危险因素。有许多假设的机制来解释肥胖相关的高血压。激活RAAS是肥胖的一个关键因素。特别是脂肪组织中的RAAS在脂肪组织功能障碍和肥胖引起的炎症中起着至关重要的作用。脂肪细胞的表型改变发生自分泌和旁分泌方式的肥大和炎症反应,损害脂肪细胞功能,包括胰岛素信号通路。脂肪组织产生并分泌瘦素、抵抗素、脂联素和脂肪素等分子,以及TNF-α、IL-6、MCP-1和IL-1等细胞因子。这些脂肪因子通过调节脂肪组织炎症的细胞内信号通路受到刺激。脂肪组织中的炎症和氧化应激在肥胖相关性高血压的机制中与微血管内皮相互作用是重要的。微血管阻力增加,血压升高。因此,微血管和血管周围脂肪组织炎症和脂肪因子合成之间的调节联系可以解释肥胖相关性高血压的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Obesity associated hypertension: new insights into mechanism.

With excess nutrition, the burden of obesity is a growing problem worldwide. The imbalance between energy intake and expenditure leads to variable disorders as all major risk factors for cardiovascular disease. There are many hypothetical mechanisms to explain obesity-associated hypertension. Activation of the RAAS is a key contributing factor in obesity. Particularly, the RAAS in adipose tissue plays a crucial role in adipose tissue dysfunction and obesity-induced inflammation. The phenotypic changes of adipocytes occur into hypertrophy and an inflammatory response in an autocrine and paracrine manner to impair adipocyte function, including insulin signaling pathway. Adipose tissue produce and secretes several molecules such as leptin, resistin, adiponectin, and visfatin, as well as cytokines such as TNF-α, IL-6, MCP-1, and IL-1. These adipokines are stimulated via the intracellular signaling pathways that regulate inflammation of adipose tissue. Inflammation and oxidative stress in adipose tissue are important to interact with the microvascular endothelium in the mechanisms of obesity-associated hypertension. Increased microvascular resistance raises blood pressure. Therefore, a regulatory link between microvascular and perivascular adipose tissue inflammation and adipokine synthesis are provided to explain the mechanism of obesity-associated hypertension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrolyte and Blood Pressure
Electrolyte and Blood Pressure Medicine-Internal Medicine
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
A Case of Recurrent Renal Infarction Following Transient Resolution: Evidence From Serial Computed Tomography. Is Renal Denervation Effective in Treating Resistant Hypertension? Use of Fludrocortisone for Hyperkalemia in Chronic Kidney Disease Not Yet on Dialysis. Fatal Hypermagnesemia in Patients Taking Magnesium Hydroxide. Osmotic Demyelination Syndrome in a High-Risk Patient Despite Cautious Correction of Hyponatremia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1