Shinichi Abe, Tadashi Nakao, Toshihito Yoshimoto, Toshihito Yoshihito, Seppo Parkkila, Gen Murakami, Baik Hwan Cho
{"title":"碳酸酐酶在胎儿眼和眼外组织中的表达。","authors":"Shinichi Abe, Tadashi Nakao, Toshihito Yoshimoto, Toshihito Yoshihito, Seppo Parkkila, Gen Murakami, Baik Hwan Cho","doi":"10.2535/ofaj.90.59","DOIUrl":null,"url":null,"abstract":"<p><p>Carbonic anhydrases (CAs) plays a critical functional role in the ciliary body and retina for maintenance of microenvironment. With immunohistochemistry using orbital contents from 8 human fetuses (12-16 weeks of gestation), we examined expressions of CAs isozymes-1, 2, 3, 6, 7 9 and 12 and found strong reactivity of CA9 in extra-ocular fibrous tissues in the anterior and posterior eyes. CA9 is known to express in the fetal joint cartilage to maintain pH against hypoxia: actually, in the present specimens, the SO pulley and its tendon was strongly positive for CA9. The CA9-positive anterior fibrous tissues were positive for smooth muscle actin and connected the orbital aspect of the 4 rectus muscle with the palpebral conjunctiva, whereas the posterior tissue was negative for smooth muscle actin and corresponded to the lateral insertion tendon of the orbitalis muscle. The anterior CA9-positve tissues seemed to correspond to the primitive form of the sleeve and pulley system. Any of matrix substances (collagen types I and II, aggrecan, versican, fibronectin, tenascin and hyaluronan) displayed a distribution pattern specific for the CA9-positive fibrous tissues. Therefore, whether or not CA9 was positive in the fibrous tissue seemed not to depend on the tissue components such as the extracellular matrix and intermediate filaments but to suggest a stressful condition such as hypoxia, unsuitable base balance and/or under mechanical stress. </p>","PeriodicalId":19462,"journal":{"name":"Okajimas folia anatomica Japonica","volume":"90 3","pages":"59-68"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2535/ofaj.90.59","citationCount":"3","resultStr":"{\"title\":\"Expression of carbonic anhydrase in the fetal eye and extra-ocular tissues.\",\"authors\":\"Shinichi Abe, Tadashi Nakao, Toshihito Yoshimoto, Toshihito Yoshihito, Seppo Parkkila, Gen Murakami, Baik Hwan Cho\",\"doi\":\"10.2535/ofaj.90.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbonic anhydrases (CAs) plays a critical functional role in the ciliary body and retina for maintenance of microenvironment. With immunohistochemistry using orbital contents from 8 human fetuses (12-16 weeks of gestation), we examined expressions of CAs isozymes-1, 2, 3, 6, 7 9 and 12 and found strong reactivity of CA9 in extra-ocular fibrous tissues in the anterior and posterior eyes. CA9 is known to express in the fetal joint cartilage to maintain pH against hypoxia: actually, in the present specimens, the SO pulley and its tendon was strongly positive for CA9. The CA9-positive anterior fibrous tissues were positive for smooth muscle actin and connected the orbital aspect of the 4 rectus muscle with the palpebral conjunctiva, whereas the posterior tissue was negative for smooth muscle actin and corresponded to the lateral insertion tendon of the orbitalis muscle. The anterior CA9-positve tissues seemed to correspond to the primitive form of the sleeve and pulley system. Any of matrix substances (collagen types I and II, aggrecan, versican, fibronectin, tenascin and hyaluronan) displayed a distribution pattern specific for the CA9-positive fibrous tissues. Therefore, whether or not CA9 was positive in the fibrous tissue seemed not to depend on the tissue components such as the extracellular matrix and intermediate filaments but to suggest a stressful condition such as hypoxia, unsuitable base balance and/or under mechanical stress. </p>\",\"PeriodicalId\":19462,\"journal\":{\"name\":\"Okajimas folia anatomica Japonica\",\"volume\":\"90 3\",\"pages\":\"59-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2535/ofaj.90.59\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Okajimas folia anatomica Japonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2535/ofaj.90.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Okajimas folia anatomica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2535/ofaj.90.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expression of carbonic anhydrase in the fetal eye and extra-ocular tissues.
Carbonic anhydrases (CAs) plays a critical functional role in the ciliary body and retina for maintenance of microenvironment. With immunohistochemistry using orbital contents from 8 human fetuses (12-16 weeks of gestation), we examined expressions of CAs isozymes-1, 2, 3, 6, 7 9 and 12 and found strong reactivity of CA9 in extra-ocular fibrous tissues in the anterior and posterior eyes. CA9 is known to express in the fetal joint cartilage to maintain pH against hypoxia: actually, in the present specimens, the SO pulley and its tendon was strongly positive for CA9. The CA9-positive anterior fibrous tissues were positive for smooth muscle actin and connected the orbital aspect of the 4 rectus muscle with the palpebral conjunctiva, whereas the posterior tissue was negative for smooth muscle actin and corresponded to the lateral insertion tendon of the orbitalis muscle. The anterior CA9-positve tissues seemed to correspond to the primitive form of the sleeve and pulley system. Any of matrix substances (collagen types I and II, aggrecan, versican, fibronectin, tenascin and hyaluronan) displayed a distribution pattern specific for the CA9-positive fibrous tissues. Therefore, whether or not CA9 was positive in the fibrous tissue seemed not to depend on the tissue components such as the extracellular matrix and intermediate filaments but to suggest a stressful condition such as hypoxia, unsuitable base balance and/or under mechanical stress.