{"title":"肾脏发育:概述。","authors":"Ilkka Pietilä, Seppo J Vainio","doi":"10.1159/000360659","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Kidney diseases are worldwide public health problems with a high cost and increasing incidence. By revealing the genetic and cellular mechanism behind mammalian kidney development, better diagnostic methods and novel therapies can be expected to be developed. The mammalian kidney is a typical organ that develops on the basis of sequential and reciprocal cell and tissue interactions. Functional genetic analysis has identified that genes from different classes are involved in the construction of the kidney and the same genes are also connected to the development of diseases.</p><p><strong>Summary: </strong>This review gives an overview of the basics of kidney ontogeny, from identification of the primary kidney cell to inductive signals of ureter budding and formation of the segmented nephron. We also go through some of the key factors involved in the control of morphogenesis.</p><p><strong>Key message: </strong>Despite the wealth of accumulated data on nephron development, including progenitor cell control factors and inductive signals, many of the detailed mechanisms remain to be revealed.</p>","PeriodicalId":18993,"journal":{"name":"Nephron Experimental Nephrology","volume":"126 2","pages":"40"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000360659","citationCount":"29","resultStr":"{\"title\":\"Kidney development: an overview.\",\"authors\":\"Ilkka Pietilä, Seppo J Vainio\",\"doi\":\"10.1159/000360659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Kidney diseases are worldwide public health problems with a high cost and increasing incidence. By revealing the genetic and cellular mechanism behind mammalian kidney development, better diagnostic methods and novel therapies can be expected to be developed. The mammalian kidney is a typical organ that develops on the basis of sequential and reciprocal cell and tissue interactions. Functional genetic analysis has identified that genes from different classes are involved in the construction of the kidney and the same genes are also connected to the development of diseases.</p><p><strong>Summary: </strong>This review gives an overview of the basics of kidney ontogeny, from identification of the primary kidney cell to inductive signals of ureter budding and formation of the segmented nephron. We also go through some of the key factors involved in the control of morphogenesis.</p><p><strong>Key message: </strong>Despite the wealth of accumulated data on nephron development, including progenitor cell control factors and inductive signals, many of the detailed mechanisms remain to be revealed.</p>\",\"PeriodicalId\":18993,\"journal\":{\"name\":\"Nephron Experimental Nephrology\",\"volume\":\"126 2\",\"pages\":\"40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000360659\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Experimental Nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000360659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Experimental Nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000360659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/5/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Background: Kidney diseases are worldwide public health problems with a high cost and increasing incidence. By revealing the genetic and cellular mechanism behind mammalian kidney development, better diagnostic methods and novel therapies can be expected to be developed. The mammalian kidney is a typical organ that develops on the basis of sequential and reciprocal cell and tissue interactions. Functional genetic analysis has identified that genes from different classes are involved in the construction of the kidney and the same genes are also connected to the development of diseases.
Summary: This review gives an overview of the basics of kidney ontogeny, from identification of the primary kidney cell to inductive signals of ureter budding and formation of the segmented nephron. We also go through some of the key factors involved in the control of morphogenesis.
Key message: Despite the wealth of accumulated data on nephron development, including progenitor cell control factors and inductive signals, many of the detailed mechanisms remain to be revealed.