介绍。

Nephron Experimental Nephrology Pub Date : 2014-01-01 Epub Date: 2014-05-19 DOI:10.1159/000360657
Paola Romagnani
{"title":"介绍。","authors":"Paola Romagnani","doi":"10.1159/000360657","DOIUrl":null,"url":null,"abstract":"adult kidney has been debated for some time. In recent years, conclusive evidence for renal progenitors has been reported in lower vertebrates such as fish and insects, as well as in mammals, like mice, rats, and humans. A renal progenitor system consisting of bipotent progenitors, tubular progenitors, and podocyte progenitors was characterized in the human. The identification of renal progenitors is increasing the knowledge about the mechanisms of kidney regeneration. Indeed, growing evidence suggests that some renal disorders can be related to renal progenitor dysfunction. For example, recent evidence suggests that impaired podocyte progenitor differentiation driven by high proteinuria may cause focal segmental glomerulosclerosis and that human tubular progenitors may represent the cell of origin of papillary renal cell carcinoma. These results open important perspectives to modulate renal progenitor function for therapeutic purposes. Other possible strategies are envisaged to promote kidney regeneration and replace kidney function. For example, several groups have reported the use of lineagespecifying factors to differentiate human embryonic stem cells into intermediate mesoderm, from which most nephron-specific cell types are derived. The study of embryonic stem cells and the pursuit of reprogramming methods aim to manipulate differentiated cells and obtain induced pluripotent stem cells that have a broad lineage potential similar to embryonic stem cells. The advent Renal diseases represent one of the major global health burdens of the 21st century. Acute kidney injury affects 1 in 5 people admitted to hospital via emergency departments and it is estimated to be fatal in around 25–30% of cases. In addition, more than 10% of people have chronic kidney disease and the overall prevalence exceeds that of diabetes. For this reason, the replacement of lost renal tissue is a primary target of regenerative medicine research. Kidney regeneration is a challenge. Indeed, the kidney has a complexity that is comparable only to that of the brain, being constituted by more than 26 different cell types that interact to build nephrons – the basic functional units of the kidney – and the surrounding interstitium. Pluripotent stem cells capable of giving rise to any cell lineage of the kidney can be isolated from early-stage mammalian embryos. As development progresses, lineage-restricted stem cells produce the tissues and organs of the body. Development does not necessarily exhaust stem cell pools and usually leads to the formation of tissue-specific adult stem cells that typically show a more restricted potency (e.g. they are multi-, bi-, or unipotent) and are thus also more often defined as progenitors. Adult stem cells and progenitor cells can respond dynamically to injury and fuel substantial regeneration of damaged tissues. For these reasons, they are thought to have important roles in the etiology of disease, malignancy, and aging. The existence of renal stem or progenitor cells in the Published online: May 19, 2014","PeriodicalId":18993,"journal":{"name":"Nephron Experimental Nephrology","volume":"126 2","pages":"33"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000360657","citationCount":"0","resultStr":"{\"title\":\"Introduction.\",\"authors\":\"Paola Romagnani\",\"doi\":\"10.1159/000360657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"adult kidney has been debated for some time. In recent years, conclusive evidence for renal progenitors has been reported in lower vertebrates such as fish and insects, as well as in mammals, like mice, rats, and humans. A renal progenitor system consisting of bipotent progenitors, tubular progenitors, and podocyte progenitors was characterized in the human. The identification of renal progenitors is increasing the knowledge about the mechanisms of kidney regeneration. Indeed, growing evidence suggests that some renal disorders can be related to renal progenitor dysfunction. For example, recent evidence suggests that impaired podocyte progenitor differentiation driven by high proteinuria may cause focal segmental glomerulosclerosis and that human tubular progenitors may represent the cell of origin of papillary renal cell carcinoma. These results open important perspectives to modulate renal progenitor function for therapeutic purposes. Other possible strategies are envisaged to promote kidney regeneration and replace kidney function. For example, several groups have reported the use of lineagespecifying factors to differentiate human embryonic stem cells into intermediate mesoderm, from which most nephron-specific cell types are derived. The study of embryonic stem cells and the pursuit of reprogramming methods aim to manipulate differentiated cells and obtain induced pluripotent stem cells that have a broad lineage potential similar to embryonic stem cells. The advent Renal diseases represent one of the major global health burdens of the 21st century. Acute kidney injury affects 1 in 5 people admitted to hospital via emergency departments and it is estimated to be fatal in around 25–30% of cases. In addition, more than 10% of people have chronic kidney disease and the overall prevalence exceeds that of diabetes. For this reason, the replacement of lost renal tissue is a primary target of regenerative medicine research. Kidney regeneration is a challenge. Indeed, the kidney has a complexity that is comparable only to that of the brain, being constituted by more than 26 different cell types that interact to build nephrons – the basic functional units of the kidney – and the surrounding interstitium. Pluripotent stem cells capable of giving rise to any cell lineage of the kidney can be isolated from early-stage mammalian embryos. As development progresses, lineage-restricted stem cells produce the tissues and organs of the body. Development does not necessarily exhaust stem cell pools and usually leads to the formation of tissue-specific adult stem cells that typically show a more restricted potency (e.g. they are multi-, bi-, or unipotent) and are thus also more often defined as progenitors. Adult stem cells and progenitor cells can respond dynamically to injury and fuel substantial regeneration of damaged tissues. For these reasons, they are thought to have important roles in the etiology of disease, malignancy, and aging. The existence of renal stem or progenitor cells in the Published online: May 19, 2014\",\"PeriodicalId\":18993,\"journal\":{\"name\":\"Nephron Experimental Nephrology\",\"volume\":\"126 2\",\"pages\":\"33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000360657\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Experimental Nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000360657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Experimental Nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000360657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/5/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introduction.
adult kidney has been debated for some time. In recent years, conclusive evidence for renal progenitors has been reported in lower vertebrates such as fish and insects, as well as in mammals, like mice, rats, and humans. A renal progenitor system consisting of bipotent progenitors, tubular progenitors, and podocyte progenitors was characterized in the human. The identification of renal progenitors is increasing the knowledge about the mechanisms of kidney regeneration. Indeed, growing evidence suggests that some renal disorders can be related to renal progenitor dysfunction. For example, recent evidence suggests that impaired podocyte progenitor differentiation driven by high proteinuria may cause focal segmental glomerulosclerosis and that human tubular progenitors may represent the cell of origin of papillary renal cell carcinoma. These results open important perspectives to modulate renal progenitor function for therapeutic purposes. Other possible strategies are envisaged to promote kidney regeneration and replace kidney function. For example, several groups have reported the use of lineagespecifying factors to differentiate human embryonic stem cells into intermediate mesoderm, from which most nephron-specific cell types are derived. The study of embryonic stem cells and the pursuit of reprogramming methods aim to manipulate differentiated cells and obtain induced pluripotent stem cells that have a broad lineage potential similar to embryonic stem cells. The advent Renal diseases represent one of the major global health burdens of the 21st century. Acute kidney injury affects 1 in 5 people admitted to hospital via emergency departments and it is estimated to be fatal in around 25–30% of cases. In addition, more than 10% of people have chronic kidney disease and the overall prevalence exceeds that of diabetes. For this reason, the replacement of lost renal tissue is a primary target of regenerative medicine research. Kidney regeneration is a challenge. Indeed, the kidney has a complexity that is comparable only to that of the brain, being constituted by more than 26 different cell types that interact to build nephrons – the basic functional units of the kidney – and the surrounding interstitium. Pluripotent stem cells capable of giving rise to any cell lineage of the kidney can be isolated from early-stage mammalian embryos. As development progresses, lineage-restricted stem cells produce the tissues and organs of the body. Development does not necessarily exhaust stem cell pools and usually leads to the formation of tissue-specific adult stem cells that typically show a more restricted potency (e.g. they are multi-, bi-, or unipotent) and are thus also more often defined as progenitors. Adult stem cells and progenitor cells can respond dynamically to injury and fuel substantial regeneration of damaged tissues. For these reasons, they are thought to have important roles in the etiology of disease, malignancy, and aging. The existence of renal stem or progenitor cells in the Published online: May 19, 2014
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nephron Experimental Nephrology
Nephron Experimental Nephrology 医学-泌尿学与肾脏学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Inhalation of Hydrogen Gas Is Beneficial for Preventing Contrast-Induced Acute Kidney Injury in Rats. Contents Vol. 128, 2014 Stimulation of Cyclooxygenase 2 Expression in Rat Peritoneal Mesothelial Cells. Polyuria in Hantavirus Infection Reflects Disease Severity and Is Associated with Prolonged Hospital Stay: A Systematic Analysis of 335 Patients from Southern Germany. Beneficial Effects of AMP-Activated Protein Kinase Agonists in Kidney Ischemia-Reperfusion: Autophagy and Cellular Stress Markers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1