{"title":"利用通道空间中的活动轮廓定位果蝇胚胎。","authors":"Qi Li, Soujanya Siddavaram Ananta","doi":"10.1504/IJCBDD.2014.061644","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce an active contour based scheme to localise Drosophila embryos in RGB images. An active contour (initiated as a closed one) maybe converge to an open contour, e.g., in the case that a targeting embryo is touched by a neighbouring one. We propose an algorithmic strategy to detect and restore open active contours. The experiment results show the promise of the proposed scheme. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"7 2-3","pages":"157-67"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.061644","citationCount":"0","resultStr":"{\"title\":\"Localisation of Drosophila embryos using active contours in channel spaces.\",\"authors\":\"Qi Li, Soujanya Siddavaram Ananta\",\"doi\":\"10.1504/IJCBDD.2014.061644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we introduce an active contour based scheme to localise Drosophila embryos in RGB images. An active contour (initiated as a closed one) maybe converge to an open contour, e.g., in the case that a targeting embryo is touched by a neighbouring one. We propose an algorithmic strategy to detect and restore open active contours. The experiment results show the promise of the proposed scheme. </p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"7 2-3\",\"pages\":\"157-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.061644\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2014.061644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2014.061644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/5/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Localisation of Drosophila embryos using active contours in channel spaces.
In this paper, we introduce an active contour based scheme to localise Drosophila embryos in RGB images. An active contour (initiated as a closed one) maybe converge to an open contour, e.g., in the case that a targeting embryo is touched by a neighbouring one. We propose an algorithmic strategy to detect and restore open active contours. The experiment results show the promise of the proposed scheme.