利用决策程序发现随机微分方程中的罕见行为:在最小细胞周期模型中的应用。

Arup Kumar Ghosh, Faraz Hussain, Susmit Jha, Christopher J Langmead, Sumit Kumar Jha
{"title":"利用决策程序发现随机微分方程中的罕见行为:在最小细胞周期模型中的应用。","authors":"Arup Kumar Ghosh,&nbsp;Faraz Hussain,&nbsp;Susmit Jha,&nbsp;Christopher J Langmead,&nbsp;Sumit Kumar Jha","doi":"10.1504/IJBRA.2014.062999","DOIUrl":null,"url":null,"abstract":"<p><p>Stochastic Differential Equation (SDE) models are used to describe the dynamics of complex systems with inherent randomness. The primary purpose of these models is to study rare but interesting or important behaviours, such as the formation of a tumour. Stochastic simulations are the most common means for estimating (or bounding) the probability of rare behaviours, but the cost of simulations increases with the rarity of events. To address this problem, we introduce a new algorithm specifically designed to quantify the likelihood of rare behaviours in SDE models. Our approach relies on temporal logics for specifying rare behaviours of interest, and on the ability of bit-vector decision procedures to reason exhaustively about fixed-precision arithmetic. We apply our algorithm to a minimal parameterised model of the cell cycle, and take Brownian noise into account while investigating the likelihood of irregularities in cell size and time between cell divisions. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2014.062999","citationCount":"1","resultStr":"{\"title\":\"Discovering rare behaviours in stochastic differential equations using decision procedures: applications to a minimal cell cycle model.\",\"authors\":\"Arup Kumar Ghosh,&nbsp;Faraz Hussain,&nbsp;Susmit Jha,&nbsp;Christopher J Langmead,&nbsp;Sumit Kumar Jha\",\"doi\":\"10.1504/IJBRA.2014.062999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stochastic Differential Equation (SDE) models are used to describe the dynamics of complex systems with inherent randomness. The primary purpose of these models is to study rare but interesting or important behaviours, such as the formation of a tumour. Stochastic simulations are the most common means for estimating (or bounding) the probability of rare behaviours, but the cost of simulations increases with the rarity of events. To address this problem, we introduce a new algorithm specifically designed to quantify the likelihood of rare behaviours in SDE models. Our approach relies on temporal logics for specifying rare behaviours of interest, and on the ability of bit-vector decision procedures to reason exhaustively about fixed-precision arithmetic. We apply our algorithm to a minimal parameterised model of the cell cycle, and take Brownian noise into account while investigating the likelihood of irregularities in cell size and time between cell divisions. </p>\",\"PeriodicalId\":35444,\"journal\":{\"name\":\"International Journal of Bioinformatics Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJBRA.2014.062999\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioinformatics Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBRA.2014.062999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2014.062999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 1

摘要

随机微分方程(SDE)模型用于描述具有内在随机性的复杂系统的动力学。这些模型的主要目的是研究罕见但有趣或重要的行为,例如肿瘤的形成。随机模拟是估计(或限定)罕见行为概率的最常用方法,但模拟的成本随着事件的罕见度而增加。为了解决这个问题,我们引入了一种新的算法,专门用于量化SDE模型中罕见行为的可能性。我们的方法依赖于时间逻辑来指定感兴趣的罕见行为,并依赖于位向量决策程序对固定精度算法进行详尽推理的能力。我们将我们的算法应用于细胞周期的最小参数化模型,并在研究细胞大小和细胞分裂时间之间不规则性的可能性时考虑布朗噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering rare behaviours in stochastic differential equations using decision procedures: applications to a minimal cell cycle model.

Stochastic Differential Equation (SDE) models are used to describe the dynamics of complex systems with inherent randomness. The primary purpose of these models is to study rare but interesting or important behaviours, such as the formation of a tumour. Stochastic simulations are the most common means for estimating (or bounding) the probability of rare behaviours, but the cost of simulations increases with the rarity of events. To address this problem, we introduce a new algorithm specifically designed to quantify the likelihood of rare behaviours in SDE models. Our approach relies on temporal logics for specifying rare behaviours of interest, and on the ability of bit-vector decision procedures to reason exhaustively about fixed-precision arithmetic. We apply our algorithm to a minimal parameterised model of the cell cycle, and take Brownian noise into account while investigating the likelihood of irregularities in cell size and time between cell divisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bioinformatics Research and Applications
International Journal of Bioinformatics Research and Applications Health Professions-Health Information Management
CiteScore
0.60
自引率
0.00%
发文量
26
期刊介绍: Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.
期刊最新文献
CoSec In silico studies on Acalypha indica, Catharanthus roseus and Coleus aromaticus derivative compounds against Omicron Prediction of ncRNA from RNA-Seq Data using Machine Learning Techniques A Machine Learning Approach to Assisted Prediction of Alzheimer's Disease with Convolutional Neural Network Development of Predictive Model of Diabetic Using Supervised Machine Learning Classification Algorithm of Ensemble Voting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1