comoR:疾病共病风险评估软件。

Journal of clinical bioinformatics Pub Date : 2014-05-23 eCollection Date: 2014-01-01 DOI:10.1186/2043-9113-4-8
Mohammad Ali Moni, Pietro Liò
{"title":"comoR:疾病共病风险评估软件。","authors":"Mohammad Ali Moni,&nbsp;Pietro Liò","doi":"10.1186/2043-9113-4-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The diagnosis of comorbidities, which refers to the coexistence of different acute and chronic diseases, is difficult due to the modern extreme specialisation of physicians. We envisage that a software dedicated to comorbidity diagnosis could result in an effective aid to the health practice.</p><p><strong>Results: </strong>We have developed an R software comoR to compute novel estimators of the disease comorbidity associations. Starting from an initial diagnosis, genetic and clinical data of a patient the software identifies the risk of disease comorbidity. Then it provides a pipeline with different causal inference packages (e.g. pcalg, qtlnet etc) to predict the causal relationship of diseases. It also provides a pipeline with network regression and survival analysis tools (e.g. Net-Cox, rbsurv etc) to predict more accurate survival probability of patients. The input of this software is the initial diagnosis for a patient and the output provides evidences of disease comorbidity mapping.</p><p><strong>Conclusions: </strong>The functions of the comoR offer flexibility for diagnostic applications to predict disease comorbidities, and can be easily integrated to high-throughput and clinical data analysis pipelines.</p>","PeriodicalId":73663,"journal":{"name":"Journal of clinical bioinformatics","volume":"4 ","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2043-9113-4-8","citationCount":"81","resultStr":"{\"title\":\"comoR: a software for disease comorbidity risk assessment.\",\"authors\":\"Mohammad Ali Moni,&nbsp;Pietro Liò\",\"doi\":\"10.1186/2043-9113-4-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The diagnosis of comorbidities, which refers to the coexistence of different acute and chronic diseases, is difficult due to the modern extreme specialisation of physicians. We envisage that a software dedicated to comorbidity diagnosis could result in an effective aid to the health practice.</p><p><strong>Results: </strong>We have developed an R software comoR to compute novel estimators of the disease comorbidity associations. Starting from an initial diagnosis, genetic and clinical data of a patient the software identifies the risk of disease comorbidity. Then it provides a pipeline with different causal inference packages (e.g. pcalg, qtlnet etc) to predict the causal relationship of diseases. It also provides a pipeline with network regression and survival analysis tools (e.g. Net-Cox, rbsurv etc) to predict more accurate survival probability of patients. The input of this software is the initial diagnosis for a patient and the output provides evidences of disease comorbidity mapping.</p><p><strong>Conclusions: </strong>The functions of the comoR offer flexibility for diagnostic applications to predict disease comorbidities, and can be easily integrated to high-throughput and clinical data analysis pipelines.</p>\",\"PeriodicalId\":73663,\"journal\":{\"name\":\"Journal of clinical bioinformatics\",\"volume\":\"4 \",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2043-9113-4-8\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2043-9113-4-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2043-9113-4-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

背景:由于现代医生的极度专业化,合并症的诊断是困难的,合并症是指不同急慢性疾病并存。我们设想,一个专门用于共病诊断的软件可以有效地帮助健康实践。结果:我们开发了一个R软件comoR来计算疾病共病关联的新估计值。该软件从患者的初步诊断、遗传和临床数据出发,识别疾病合并症的风险。然后,它提供了一个管道,使用不同的因果推理包(如pcalg, qtlnet等)来预测疾病的因果关系。它还提供了网络回归和生存分析工具(如Net-Cox, rbsurv等)的管道,以更准确地预测患者的生存概率。该软件的输入是对患者的初步诊断,输出提供疾病共病映射的证据。结论:comoR的功能为预测疾病合并症的诊断应用提供了灵活性,并且可以轻松集成到高通量和临床数据分析管道中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
comoR: a software for disease comorbidity risk assessment.

Background: The diagnosis of comorbidities, which refers to the coexistence of different acute and chronic diseases, is difficult due to the modern extreme specialisation of physicians. We envisage that a software dedicated to comorbidity diagnosis could result in an effective aid to the health practice.

Results: We have developed an R software comoR to compute novel estimators of the disease comorbidity associations. Starting from an initial diagnosis, genetic and clinical data of a patient the software identifies the risk of disease comorbidity. Then it provides a pipeline with different causal inference packages (e.g. pcalg, qtlnet etc) to predict the causal relationship of diseases. It also provides a pipeline with network regression and survival analysis tools (e.g. Net-Cox, rbsurv etc) to predict more accurate survival probability of patients. The input of this software is the initial diagnosis for a patient and the output provides evidences of disease comorbidity mapping.

Conclusions: The functions of the comoR offer flexibility for diagnostic applications to predict disease comorbidities, and can be easily integrated to high-throughput and clinical data analysis pipelines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical research informatics (CRI): overview over new tools and services First Clinical Research Informatics (CRI) Solutions Day: advanced IT support from EU projects for clinical trials Mobile eHealth solution (ePRO) EHR4CR local workbench TRANSFoRm Data quality tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1