神经元网络的自适应和疲劳模型及非线性碎片方程的大时间渐近性。

IF 2.3 4区 医学 Q1 Neuroscience Journal of Mathematical Neuroscience Pub Date : 2014-07-24 eCollection Date: 2014-01-01 DOI:10.1186/2190-8567-4-14
Khashayar Pakdaman, Benoît Perthame, Delphine Salort
{"title":"神经元网络的自适应和疲劳模型及非线性碎片方程的大时间渐近性。","authors":"Khashayar Pakdaman,&nbsp;Benoît Perthame,&nbsp;Delphine Salort","doi":"10.1186/2190-8567-4-14","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by a model for neural networks with adaptation and fatigue, we study a conservative fragmentation equation that describes the density probability of neurons with an elapsed time s after its last discharge. In the linear setting, we extend an argument by Laurençot and Perthame to prove exponential decay to the steady state. This extension allows us to handle coefficients that have a large variation rather than constant coefficients. In another extension of the argument, we treat a weakly nonlinear case and prove total desynchronization in the network. For greater nonlinearities, we present a numerical study of the impact of the fragmentation term on the appearance of synchronization of neurons in the network using two \"extreme\" cases. Mathematics Subject Classification (2000)2010: 35B40, 35F20, 35R09, 92B20. </p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2014-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2190-8567-4-14","citationCount":"53","resultStr":"{\"title\":\"Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation.\",\"authors\":\"Khashayar Pakdaman,&nbsp;Benoît Perthame,&nbsp;Delphine Salort\",\"doi\":\"10.1186/2190-8567-4-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by a model for neural networks with adaptation and fatigue, we study a conservative fragmentation equation that describes the density probability of neurons with an elapsed time s after its last discharge. In the linear setting, we extend an argument by Laurençot and Perthame to prove exponential decay to the steady state. This extension allows us to handle coefficients that have a large variation rather than constant coefficients. In another extension of the argument, we treat a weakly nonlinear case and prove total desynchronization in the network. For greater nonlinearities, we present a numerical study of the impact of the fragmentation term on the appearance of synchronization of neurons in the network using two \\\"extreme\\\" cases. Mathematics Subject Classification (2000)2010: 35B40, 35F20, 35R09, 92B20. </p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2014-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2190-8567-4-14\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/2190-8567-4-14\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/2190-8567-4-14","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 53

摘要

在具有适应和疲劳的神经网络模型的激励下,我们研究了一个保守的碎片化方程,该方程描述了在最后一次放电后经过时间为s的神经元的密度概率。在线性环境下,我们推广了laurenot和Perthame的论点,证明了指数衰减到稳态。这个扩展允许我们处理系数有很大的变化,而不是常数系数。在此论点的另一个扩展中,我们处理了一个弱非线性的情况,并证明了网络中的完全不同步。对于更大的非线性,我们采用两个“极端”情况,对碎片项对网络中神经元同步出现的影响进行了数值研究。数学学科分类(2000)2010:35B40, 35F20, 35R09, 92B20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation.

Motivated by a model for neural networks with adaptation and fatigue, we study a conservative fragmentation equation that describes the density probability of neurons with an elapsed time s after its last discharge. In the linear setting, we extend an argument by Laurençot and Perthame to prove exponential decay to the steady state. This extension allows us to handle coefficients that have a large variation rather than constant coefficients. In another extension of the argument, we treat a weakly nonlinear case and prove total desynchronization in the network. For greater nonlinearities, we present a numerical study of the impact of the fragmentation term on the appearance of synchronization of neurons in the network using two "extreme" cases. Mathematics Subject Classification (2000)2010: 35B40, 35F20, 35R09, 92B20.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
期刊最新文献
Canard solutions in neural mass models: consequences on critical regimes. Rendering neuronal state equations compatible with the principle of stationary action. Pattern formation in a 2-population homogenized neuronal network model. Auditory streaming emerges from fast excitation and slow delayed inhibition. A model of on/off transitions in neurons of the deep cerebellar nuclei: deciphering the underlying ionic mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1