3D-QSAR联合方法在硅中发现和分析神经氨酸酶抑制剂的发展。

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2014-01-01 DOI:10.1504/ijdmb.2014.060053
Chun-Yuan Lin, Hsiao-Chieh Chi, Kuei-Chung Shih, Jiayi Zhou, Nai-Wan Hsiao, Chuan-Yi Tang
{"title":"3D-QSAR联合方法在硅中发现和分析神经氨酸酶抑制剂的发展。","authors":"Chun-Yuan Lin,&nbsp;Hsiao-Chieh Chi,&nbsp;Kuei-Chung Shih,&nbsp;Jiayi Zhou,&nbsp;Nai-Wan Hsiao,&nbsp;Chuan-Yi Tang","doi":"10.1504/ijdmb.2014.060053","DOIUrl":null,"url":null,"abstract":"<p><p>Zanamivir and Oseltamivir are both sialic acid analog inhibitors of Neuraminidase (NA), which is an important target in influenza A virus treatment. Quantitative Structure-Activity Relationships (QSAR) is a common computational method for correlating the structural properties of compounds (or inhibitors) with their biological activities. The pharmcophore model easily and quickly recognises related inhibitors and also fits the binding site interaction features of a protein structure. The Comparative Molecular Similarity Index Analysis (CoMSIA) model easily optimises molecular structures and describes the limit range of molecule weights. This study proposes a combination approach that integrates these two models based on the same training set inhibitors in order to screen and optimize NA inhibitor candidates during drug design.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"9 3","pages":"305-20"},"PeriodicalIF":0.2000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2014.060053","citationCount":"0","resultStr":"{\"title\":\"Development of 3D-QSAR combination approach for discovering and analysing neuraminidase inhibitors in silico.\",\"authors\":\"Chun-Yuan Lin,&nbsp;Hsiao-Chieh Chi,&nbsp;Kuei-Chung Shih,&nbsp;Jiayi Zhou,&nbsp;Nai-Wan Hsiao,&nbsp;Chuan-Yi Tang\",\"doi\":\"10.1504/ijdmb.2014.060053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zanamivir and Oseltamivir are both sialic acid analog inhibitors of Neuraminidase (NA), which is an important target in influenza A virus treatment. Quantitative Structure-Activity Relationships (QSAR) is a common computational method for correlating the structural properties of compounds (or inhibitors) with their biological activities. The pharmcophore model easily and quickly recognises related inhibitors and also fits the binding site interaction features of a protein structure. The Comparative Molecular Similarity Index Analysis (CoMSIA) model easily optimises molecular structures and describes the limit range of molecule weights. This study proposes a combination approach that integrates these two models based on the same training set inhibitors in order to screen and optimize NA inhibitor candidates during drug design.</p>\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"9 3\",\"pages\":\"305-20\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijdmb.2014.060053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdmb.2014.060053\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2014.060053","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

扎那米韦和奥司他韦都是神经氨酸酶(NA)的唾液酸类似物抑制剂,是治疗甲型流感病毒的重要靶点。定量构效关系(Quantitative Structure-Activity relationship, QSAR)是将化合物(或抑制剂)的结构性质与其生物活性相关联的一种常用计算方法。该模型可以方便、快速地识别相关抑制剂,并符合蛋白质结构的结合位点相互作用特征。比较分子相似指数分析(CoMSIA)模型易于优化分子结构并描述分子量的极限范围。本研究提出了一种基于相同训练集抑制剂的组合方法,将这两种模型集成在一起,以便在药物设计过程中筛选和优化NA抑制剂候选物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of 3D-QSAR combination approach for discovering and analysing neuraminidase inhibitors in silico.

Zanamivir and Oseltamivir are both sialic acid analog inhibitors of Neuraminidase (NA), which is an important target in influenza A virus treatment. Quantitative Structure-Activity Relationships (QSAR) is a common computational method for correlating the structural properties of compounds (or inhibitors) with their biological activities. The pharmcophore model easily and quickly recognises related inhibitors and also fits the binding site interaction features of a protein structure. The Comparative Molecular Similarity Index Analysis (CoMSIA) model easily optimises molecular structures and describes the limit range of molecule weights. This study proposes a combination approach that integrates these two models based on the same training set inhibitors in order to screen and optimize NA inhibitor candidates during drug design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1