通过隐式溶剂分子动力学模拟和对接研究PMX53抑制C5aR的机制。

Q1 Biochemistry, Genetics and Molecular Biology BMC Biophysics Pub Date : 2014-08-12 eCollection Date: 2014-01-01 DOI:10.1186/2046-1682-7-5
Phanourios Tamamis, Chris A Kieslich, Gregory V Nikiforovich, Trent M Woodruff, Dimitrios Morikis, Georgios Archontis
{"title":"通过隐式溶剂分子动力学模拟和对接研究PMX53抑制C5aR的机制。","authors":"Phanourios Tamamis,&nbsp;Chris A Kieslich,&nbsp;Gregory V Nikiforovich,&nbsp;Trent M Woodruff,&nbsp;Dimitrios Morikis,&nbsp;Georgios Archontis","doi":"10.1186/2046-1682-7-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease.</p><p><strong>Results: </strong>We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism.</p><p><strong>Conclusion: </strong>This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use.</p>","PeriodicalId":9045,"journal":{"name":"BMC Biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2046-1682-7-5","citationCount":"30","resultStr":"{\"title\":\"Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking.\",\"authors\":\"Phanourios Tamamis,&nbsp;Chris A Kieslich,&nbsp;Gregory V Nikiforovich,&nbsp;Trent M Woodruff,&nbsp;Dimitrios Morikis,&nbsp;Georgios Archontis\",\"doi\":\"10.1186/2046-1682-7-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease.</p><p><strong>Results: </strong>We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism.</p><p><strong>Conclusion: </strong>This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use.</p>\",\"PeriodicalId\":9045,\"journal\":{\"name\":\"BMC Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2046-1682-7-5\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2046-1682-7-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2046-1682-7-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 30

摘要

背景:补体蛋白C5a主要通过结合和激活g蛋白偶联C5a受体C5aR (CD88)起作用,并与许多炎症性疾病有关。环六肽PMX53(序列Ace-Phe-[Orn-Pro-dCha-Trp-Arg])是一种纳摩尔效的C5aR拮抗剂,被广泛用于研究C5aR在疾病中的功能。结果:通过分子动力学(MD)模拟、对接、构象聚类和自由能滤波的计算框架,首次构建了C5aR:PMX53复合物的分子模型,而无需先验使用实验约束。该模型与实验数据一致,并用于提出有助于结合的重要分子间相互作用,并对PMX53拮抗机制提出假设。结论:本研究为改进C5aR拮抗剂的设计以及补体活化和功能的原子细节机制研究奠定了基础。我们的计算框架可以广泛应用于开发膜环境中的gpcr配体结构模型,肽类物和其他具有潜在临床应用价值的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking.

Background: The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease.

Results: We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism.

Conclusion: This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biophysics
BMC Biophysics BIOPHYSICS-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation
期刊最新文献
Correction to: Long range Debye-Hückel correction for computation of grid-based electrostatic forces between biomacromolecules. Covalent linkage of bacterial voltage-gated sodium channels. Role of protein interactions in stabilizing canonical DNA features in simulations of DNA in crowded environments. A discontinuous Galerkin model for fluorescence loss in photobleaching of intracellular polyglutamine protein aggregates. Phenylalanine intercalation parameters for liquid-disordered phase domains - a membrane model study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1