mapk活化的蛋白激酶2缺乏引起超急性肿瘤坏死因子诱导的炎症性休克。

Q1 Biochemistry, Genetics and Molecular Biology BMC Physiology Pub Date : 2014-09-04 DOI:10.1186/s12899-014-0005-1
Benjamin Vandendriessche, An Goethals, Alba Simats, Evelien Van Hamme, Peter Brouckaert, Anje Cauwels
{"title":"mapk活化的蛋白激酶2缺乏引起超急性肿瘤坏死因子诱导的炎症性休克。","authors":"Benjamin Vandendriessche,&nbsp;An Goethals,&nbsp;Alba Simats,&nbsp;Evelien Van Hamme,&nbsp;Peter Brouckaert,&nbsp;Anje Cauwels","doi":"10.1186/s12899-014-0005-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MAPK-activated protein kinase 2 (MK2) plays a pivotal role in the cell response to (inflammatory) stress. Among others, MK2 is known to be involved in the regulation of cytokine mRNA metabolism and regulation of actin cytoskeleton dynamics. Previously, MK2-deficient mice were shown to be highly resistant to LPS/d-Galactosamine-induced hepatitis. Additionally, research in various disease models has indicated the kinase as an interesting inhibitory drug target for various acute or chronic inflammatory diseases.</p><p><strong>Results: </strong>We show that in striking contrast to the known resistance of MK2-deficient mice to a challenge with LPS/D-Gal, a low dose of tumor necrosis factor (TNF) causes hyperacute mortality via an oxidative stress driven mechanism. We identified in vivo defects in the stress fiber response in endothelial cells, which could have resulted in reduced resistance of the endothelial barrier to deal with exposure to oxidative stress. In addition, MK2-deficient mice were found to be more sensitive to cecal ligation and puncture-induced sepsis.</p><p><strong>Conclusions: </strong>The capacity of the endothelial barrier to deal with inflammatory and oxidative stress is imperative to allow a regulated immune response and maintain endothelial barrier integrity. Our results indicate that, considering the central role of TNF in pro-inflammatory signaling, therapeutic strategies examining pharmacological inhibition of MK2 should take potentially dangerous side effects at the level of endothelial barrier integrity into account.</p>","PeriodicalId":35905,"journal":{"name":"BMC Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12899-014-0005-1","citationCount":"11","resultStr":"{\"title\":\"MAPK-activated protein kinase 2-deficiency causes hyperacute tumor necrosis factor-induced inflammatory shock.\",\"authors\":\"Benjamin Vandendriessche,&nbsp;An Goethals,&nbsp;Alba Simats,&nbsp;Evelien Van Hamme,&nbsp;Peter Brouckaert,&nbsp;Anje Cauwels\",\"doi\":\"10.1186/s12899-014-0005-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>MAPK-activated protein kinase 2 (MK2) plays a pivotal role in the cell response to (inflammatory) stress. Among others, MK2 is known to be involved in the regulation of cytokine mRNA metabolism and regulation of actin cytoskeleton dynamics. Previously, MK2-deficient mice were shown to be highly resistant to LPS/d-Galactosamine-induced hepatitis. Additionally, research in various disease models has indicated the kinase as an interesting inhibitory drug target for various acute or chronic inflammatory diseases.</p><p><strong>Results: </strong>We show that in striking contrast to the known resistance of MK2-deficient mice to a challenge with LPS/D-Gal, a low dose of tumor necrosis factor (TNF) causes hyperacute mortality via an oxidative stress driven mechanism. We identified in vivo defects in the stress fiber response in endothelial cells, which could have resulted in reduced resistance of the endothelial barrier to deal with exposure to oxidative stress. In addition, MK2-deficient mice were found to be more sensitive to cecal ligation and puncture-induced sepsis.</p><p><strong>Conclusions: </strong>The capacity of the endothelial barrier to deal with inflammatory and oxidative stress is imperative to allow a regulated immune response and maintain endothelial barrier integrity. Our results indicate that, considering the central role of TNF in pro-inflammatory signaling, therapeutic strategies examining pharmacological inhibition of MK2 should take potentially dangerous side effects at the level of endothelial barrier integrity into account.</p>\",\"PeriodicalId\":35905,\"journal\":{\"name\":\"BMC Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12899-014-0005-1\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12899-014-0005-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12899-014-0005-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 11

摘要

背景:mapk激活的蛋白激酶2 (MK2)在细胞对(炎症)应激的反应中起着关键作用。其中,MK2参与细胞因子mRNA代谢的调控和肌动蛋白细胞骨架动力学的调控。先前,mk2缺陷小鼠被证明对LPS/d-半乳糖胺诱导的肝炎具有高度抗性。此外,各种疾病模型的研究表明,该激酶是各种急慢性炎症性疾病的有趣抑制药物靶点。结果:我们发现,与已知的mk2缺陷小鼠对LPS/D-Gal的抗性形成鲜明对比的是,低剂量的肿瘤坏死因子(TNF)通过氧化应激驱动机制导致超急性死亡。我们在内皮细胞中发现了应激纤维反应的体内缺陷,这可能导致内皮屏障抵抗氧化应激的能力降低。此外,mk2缺陷小鼠对盲肠结扎和穿刺性脓毒症更敏感。结论:内皮屏障处理炎症和氧化应激的能力对于调节免疫反应和维持内皮屏障的完整性至关重要。我们的研究结果表明,考虑到TNF在促炎信号传导中的核心作用,检查MK2药理抑制的治疗策略应考虑内皮屏障完整性水平上潜在的危险副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MAPK-activated protein kinase 2-deficiency causes hyperacute tumor necrosis factor-induced inflammatory shock.

Background: MAPK-activated protein kinase 2 (MK2) plays a pivotal role in the cell response to (inflammatory) stress. Among others, MK2 is known to be involved in the regulation of cytokine mRNA metabolism and regulation of actin cytoskeleton dynamics. Previously, MK2-deficient mice were shown to be highly resistant to LPS/d-Galactosamine-induced hepatitis. Additionally, research in various disease models has indicated the kinase as an interesting inhibitory drug target for various acute or chronic inflammatory diseases.

Results: We show that in striking contrast to the known resistance of MK2-deficient mice to a challenge with LPS/D-Gal, a low dose of tumor necrosis factor (TNF) causes hyperacute mortality via an oxidative stress driven mechanism. We identified in vivo defects in the stress fiber response in endothelial cells, which could have resulted in reduced resistance of the endothelial barrier to deal with exposure to oxidative stress. In addition, MK2-deficient mice were found to be more sensitive to cecal ligation and puncture-induced sepsis.

Conclusions: The capacity of the endothelial barrier to deal with inflammatory and oxidative stress is imperative to allow a regulated immune response and maintain endothelial barrier integrity. Our results indicate that, considering the central role of TNF in pro-inflammatory signaling, therapeutic strategies examining pharmacological inhibition of MK2 should take potentially dangerous side effects at the level of endothelial barrier integrity into account.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Physiology
BMC Physiology Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
9.60
自引率
0.00%
发文量
0
期刊介绍: BMC Physiology is an open access journal publishing original peer-reviewed research articles in cellular, tissue-level, organismal, functional, and developmental aspects of physiological processes. BMC Physiology (ISSN 1472-6793) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record and Google Scholar.
期刊最新文献
Exercise endurance capacity is markedly reduced due to impaired energy homeostasis during prolonged fasting in FABP4/5 deficient mice. Deficiency of the BMP Type I receptor ALK3 partly protects mice from anemia of inflammation. Claudin expression during early postnatal development of the murine cochlea. Regulation of Locomotor activity in fed, fasted, and food-restricted mice lacking tissue-type plasminogen activator. Adiponectin is required for maintaining normal body temperature in a cold environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1