Mario Merlini, Dimitrios Davalos, Katerina Akassoglou
{"title":"中枢神经系统疾病中神经血管单元的体内成像。","authors":"Mario Merlini, Dimitrios Davalos, Katerina Akassoglou","doi":"10.4161/intv.22214","DOIUrl":null,"url":null,"abstract":"<p><p>The neurovascular unit-comprised of glia, pericytes, neurons and cerebrovasculature-is a dynamic interface that ensures physiological central nervous system (CNS) functioning. In disease dynamic remodeling of the neurovascular interface triggers a cascade of responses that determine the extent of CNS degeneration and repair. The dynamics of these processes can be adequately captured by imaging in vivo, which allows the study of cellular responses to environmental stimuli and cell-cell interactions in the living brain in real time. This perspective focuses on intravital imaging studies of the neurovascular unit in stroke, multiple sclerosis (MS) and Alzheimer disease (AD) models and discusses their potential for identifying novel therapeutic targets.</p>","PeriodicalId":14512,"journal":{"name":"IntraVital","volume":"1 2","pages":"87-94"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/intv.22214","citationCount":"15","resultStr":"{\"title\":\"In vivo imaging of the neurovascular unit in CNS disease.\",\"authors\":\"Mario Merlini, Dimitrios Davalos, Katerina Akassoglou\",\"doi\":\"10.4161/intv.22214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The neurovascular unit-comprised of glia, pericytes, neurons and cerebrovasculature-is a dynamic interface that ensures physiological central nervous system (CNS) functioning. In disease dynamic remodeling of the neurovascular interface triggers a cascade of responses that determine the extent of CNS degeneration and repair. The dynamics of these processes can be adequately captured by imaging in vivo, which allows the study of cellular responses to environmental stimuli and cell-cell interactions in the living brain in real time. This perspective focuses on intravital imaging studies of the neurovascular unit in stroke, multiple sclerosis (MS) and Alzheimer disease (AD) models and discusses their potential for identifying novel therapeutic targets.</p>\",\"PeriodicalId\":14512,\"journal\":{\"name\":\"IntraVital\",\"volume\":\"1 2\",\"pages\":\"87-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/intv.22214\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IntraVital\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/intv.22214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IntraVital","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/intv.22214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vivo imaging of the neurovascular unit in CNS disease.
The neurovascular unit-comprised of glia, pericytes, neurons and cerebrovasculature-is a dynamic interface that ensures physiological central nervous system (CNS) functioning. In disease dynamic remodeling of the neurovascular interface triggers a cascade of responses that determine the extent of CNS degeneration and repair. The dynamics of these processes can be adequately captured by imaging in vivo, which allows the study of cellular responses to environmental stimuli and cell-cell interactions in the living brain in real time. This perspective focuses on intravital imaging studies of the neurovascular unit in stroke, multiple sclerosis (MS) and Alzheimer disease (AD) models and discusses their potential for identifying novel therapeutic targets.