丹参素对四氯化碳致大鼠肝纤维化的保护作用

W. Qu , H. Huang , K. Li , C. Qin
{"title":"丹参素对四氯化碳致大鼠肝纤维化的保护作用","authors":"W. Qu ,&nbsp;H. Huang ,&nbsp;K. Li ,&nbsp;C. Qin","doi":"10.1016/j.patbio.2014.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>The culprit of hepatic fibrosis (HF) is linked to suprathreshold deposition of collagen. Thus, collagen reduction by improved metabolism contributes to HF management. In this study, we aimed to investigate the hepatoprotective effects of Danshensu (DSS) against carbon tetrachloride (CCl<sub>4</sub>)-induced HF rats. The results showed that DSS-administrated rats resulted in decreasing in hepatosomatic indexes, and lowering serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Meanwhile, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were increased, while the content of malonaldehyde (MDA) was lessened in liver tissue of DSS administration group. In addition, the pro-fibrotic markers of hydroxyproline (Hyp), type III procollagen (PCIII) and hyaluronic acid (HA) contents were decreased. Histopathological examination confirmed that the hepatotoxicity in CCl<sub>4</sub>-injured rats was alleviated following the DSS administration. Furthermore, intrahepatic protein expressions of alpha-smooth muscle actin (α-SMA), phosphorylated JAK2 (p-JAK2) and phosphorylated STAT3 (p-STAT3) were effectively down-regulated, respectively. Overall, this work demonstrates that DSS played the protective effect against CCl<sub>4</sub>-induced cytotoxicity in liver tissue, which the probable mechanism is associated with attenuation of lipid peroxidation, collagen accumulation and enhancement of anti-oxidative defense capability, as well as regulation of intrahepatic JAK/STAT pathway for maintaining collagenic homoeostasis.</p></div>","PeriodicalId":19743,"journal":{"name":"Pathologie-biologie","volume":"62 6","pages":"Pages 348-353"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.patbio.2014.07.008","citationCount":"19","resultStr":"{\"title\":\"Danshensu-mediated protective effect against hepatic fibrosis induced by carbon tetrachloride in rats\",\"authors\":\"W. Qu ,&nbsp;H. Huang ,&nbsp;K. Li ,&nbsp;C. Qin\",\"doi\":\"10.1016/j.patbio.2014.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The culprit of hepatic fibrosis (HF) is linked to suprathreshold deposition of collagen. Thus, collagen reduction by improved metabolism contributes to HF management. In this study, we aimed to investigate the hepatoprotective effects of Danshensu (DSS) against carbon tetrachloride (CCl<sub>4</sub>)-induced HF rats. The results showed that DSS-administrated rats resulted in decreasing in hepatosomatic indexes, and lowering serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Meanwhile, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were increased, while the content of malonaldehyde (MDA) was lessened in liver tissue of DSS administration group. In addition, the pro-fibrotic markers of hydroxyproline (Hyp), type III procollagen (PCIII) and hyaluronic acid (HA) contents were decreased. Histopathological examination confirmed that the hepatotoxicity in CCl<sub>4</sub>-injured rats was alleviated following the DSS administration. Furthermore, intrahepatic protein expressions of alpha-smooth muscle actin (α-SMA), phosphorylated JAK2 (p-JAK2) and phosphorylated STAT3 (p-STAT3) were effectively down-regulated, respectively. Overall, this work demonstrates that DSS played the protective effect against CCl<sub>4</sub>-induced cytotoxicity in liver tissue, which the probable mechanism is associated with attenuation of lipid peroxidation, collagen accumulation and enhancement of anti-oxidative defense capability, as well as regulation of intrahepatic JAK/STAT pathway for maintaining collagenic homoeostasis.</p></div>\",\"PeriodicalId\":19743,\"journal\":{\"name\":\"Pathologie-biologie\",\"volume\":\"62 6\",\"pages\":\"Pages 348-353\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.patbio.2014.07.008\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathologie-biologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0369811414001242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathologie-biologie","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0369811414001242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

肝纤维化(HF)的罪魁祸首与胶原蛋白的阈上沉积有关。因此,通过改善新陈代谢减少胶原蛋白有助于心衰管理。本研究旨在探讨丹参素(DSS)对四氯化碳(CCl4)诱导的HF大鼠的肝保护作用。结果表明,大鼠给药后肝体指标明显降低,血清谷丙转氨酶(ALT)和天冬氨酸转氨酶(AST)水平明显降低。同时,DSS给药组肝组织超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性升高,丙二醛(MDA)含量降低。此外,促纤维化标志物羟脯氨酸(Hyp)、III型前胶原(PCIII)和透明质酸(HA)含量降低。组织病理学检查证实,DSS对ccl4损伤大鼠的肝毒性有所减轻。此外,肝内α-平滑肌肌动蛋白(α-SMA)、磷酸化JAK2 (p-JAK2)和磷酸化STAT3 (p-STAT3)的蛋白表达均有效下调。综上所述,本研究表明DSS对ccl4诱导的肝组织细胞毒性具有保护作用,其机制可能与抑制脂质过氧化、胶原积累、增强抗氧化防御能力以及调节肝内JAK/STAT通路维持胶原稳态有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Danshensu-mediated protective effect against hepatic fibrosis induced by carbon tetrachloride in rats

The culprit of hepatic fibrosis (HF) is linked to suprathreshold deposition of collagen. Thus, collagen reduction by improved metabolism contributes to HF management. In this study, we aimed to investigate the hepatoprotective effects of Danshensu (DSS) against carbon tetrachloride (CCl4)-induced HF rats. The results showed that DSS-administrated rats resulted in decreasing in hepatosomatic indexes, and lowering serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Meanwhile, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were increased, while the content of malonaldehyde (MDA) was lessened in liver tissue of DSS administration group. In addition, the pro-fibrotic markers of hydroxyproline (Hyp), type III procollagen (PCIII) and hyaluronic acid (HA) contents were decreased. Histopathological examination confirmed that the hepatotoxicity in CCl4-injured rats was alleviated following the DSS administration. Furthermore, intrahepatic protein expressions of alpha-smooth muscle actin (α-SMA), phosphorylated JAK2 (p-JAK2) and phosphorylated STAT3 (p-STAT3) were effectively down-regulated, respectively. Overall, this work demonstrates that DSS played the protective effect against CCl4-induced cytotoxicity in liver tissue, which the probable mechanism is associated with attenuation of lipid peroxidation, collagen accumulation and enhancement of anti-oxidative defense capability, as well as regulation of intrahepatic JAK/STAT pathway for maintaining collagenic homoeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathologie-biologie
Pathologie-biologie 医学-病理学
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊最新文献
[Filaggrin]. Editorial board Protective effect of Fenofibrate in renal ischemia reperfusion injury: Involved in suppressing kinase 2 (JAK2)/transcription 3 (STAT3)/p53 signaling activation Longevity and aging. Mechanisms and perspectives PKCs in thrombus formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1