{"title":"三氯乙烯蒸汽滥用相关鉴别刺激作用的药理学分类。","authors":"Keith L Shelton, Katherine L Nicholson","doi":"10.4303/jdar/235839","DOIUrl":null,"url":null,"abstract":"<p><p>Inhalants are distinguished as a class primarily based upon a shared route of administration. Grouping inhalants according to their abuse-related <i>in vivo</i> pharmacological effects using the drug discrimination procedure has the potential to provide a more relevant classification scheme to the research and treatment community. Mice were trained to differentiate the introceptive effects of the trichloroethylene vapor from air using an operant procedure. Trichloroethylene is a chlorinated hydrocarbon solvent once used as an anesthetic as well as in glues and other consumer products. It is now primarily employed as a metal degreaser. We found that the stimulus effects of trichloroethylene were similar to those of other chlorinated hydrocarbon vapors, the aromatic hydrocarbon toluene and the vapor anesthetics methoxyflurane and isoflurane. The stimulus effects of trichloroethylene overlapped with those of the barbiturate methohexital, to a lesser extent the benzodiazepine midazolam and to ethanol. NMDA antagonists, the kappa opioid agonist U50,488 and the mixed 5-HT agonist mCPP largely failed to substitute for trichloroethylene. These data suggest that stimulus effects of chlorinated hydrocarbon vapors are mediated at least partially by GABA<sub>A</sub> receptor positive modulatory effects.</p>","PeriodicalId":37818,"journal":{"name":"Journal of Drug and Alcohol Research","volume":"3 ","pages":"235839"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155754/pdf/nihms584761.pdf","citationCount":"3","resultStr":"{\"title\":\"Pharmacological classification of the abuse-related discriminative stimulus effects of trichloroethylene vapor.\",\"authors\":\"Keith L Shelton, Katherine L Nicholson\",\"doi\":\"10.4303/jdar/235839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inhalants are distinguished as a class primarily based upon a shared route of administration. Grouping inhalants according to their abuse-related <i>in vivo</i> pharmacological effects using the drug discrimination procedure has the potential to provide a more relevant classification scheme to the research and treatment community. Mice were trained to differentiate the introceptive effects of the trichloroethylene vapor from air using an operant procedure. Trichloroethylene is a chlorinated hydrocarbon solvent once used as an anesthetic as well as in glues and other consumer products. It is now primarily employed as a metal degreaser. We found that the stimulus effects of trichloroethylene were similar to those of other chlorinated hydrocarbon vapors, the aromatic hydrocarbon toluene and the vapor anesthetics methoxyflurane and isoflurane. The stimulus effects of trichloroethylene overlapped with those of the barbiturate methohexital, to a lesser extent the benzodiazepine midazolam and to ethanol. NMDA antagonists, the kappa opioid agonist U50,488 and the mixed 5-HT agonist mCPP largely failed to substitute for trichloroethylene. These data suggest that stimulus effects of chlorinated hydrocarbon vapors are mediated at least partially by GABA<sub>A</sub> receptor positive modulatory effects.</p>\",\"PeriodicalId\":37818,\"journal\":{\"name\":\"Journal of Drug and Alcohol Research\",\"volume\":\"3 \",\"pages\":\"235839\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155754/pdf/nihms584761.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug and Alcohol Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4303/jdar/235839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug and Alcohol Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4303/jdar/235839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Psychology","Score":null,"Total":0}
Pharmacological classification of the abuse-related discriminative stimulus effects of trichloroethylene vapor.
Inhalants are distinguished as a class primarily based upon a shared route of administration. Grouping inhalants according to their abuse-related in vivo pharmacological effects using the drug discrimination procedure has the potential to provide a more relevant classification scheme to the research and treatment community. Mice were trained to differentiate the introceptive effects of the trichloroethylene vapor from air using an operant procedure. Trichloroethylene is a chlorinated hydrocarbon solvent once used as an anesthetic as well as in glues and other consumer products. It is now primarily employed as a metal degreaser. We found that the stimulus effects of trichloroethylene were similar to those of other chlorinated hydrocarbon vapors, the aromatic hydrocarbon toluene and the vapor anesthetics methoxyflurane and isoflurane. The stimulus effects of trichloroethylene overlapped with those of the barbiturate methohexital, to a lesser extent the benzodiazepine midazolam and to ethanol. NMDA antagonists, the kappa opioid agonist U50,488 and the mixed 5-HT agonist mCPP largely failed to substitute for trichloroethylene. These data suggest that stimulus effects of chlorinated hydrocarbon vapors are mediated at least partially by GABAA receptor positive modulatory effects.
期刊介绍:
The Journal of Drug and Alcohol Research (JDAR) is a scholarly open access, peer-reviewed, and fully refereed journal dedicated to publishing sound papers on advances in the field of drug, opiate, nicotine and alcohol abuse, both basic and clinical. The journal will consider papers from all sub-disciplines and aspects of drug abuse, dependence and addiction research. Manuscripts will be published online as soon as they are accepted, which will reduce the time of publication. Because there are no space limitations or favored topics, all papers, within the scope of the journal, judged to be sound by the reviewers, will be published.