{"title":"基于多项式narx的模块化化工系统非线性模型预测控制","authors":"Anastasia Nikolakopoulou, Richard D. Braatz","doi":"10.1016/j.compchemeng.2023.108272","DOIUrl":null,"url":null,"abstract":"<div><p>The design of control systems for modular chemical systems typically requires the identification of nonlinear dynamic<span><span> models. Mechanistic models for modular chemical systems are typically of high order, which results in high online computational cost when the models are incorporated into the nonlinear </span>model predictive control<span> (NMPC) formulations developed for explicitly taking constraints into account. This article proposes the use of a particular class of nonlinear input–output models, polynomial nonlinear-autoregressive-with-exogenous-inputs (NARX) models, in the NMPC formulations. A machine learning algorithm, elastic net, is used to select which terms to include within the NARX polynomial series representation. The approach for constructing sparse predictive models and their use in real-time implementable NMPC are demonstrated in a two-input two-output chemical reactor case study. The Julia programming language is used to solve the NMPC optimization problem, resulting in low online computational cost.</span></span></p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"177 ","pages":"Article 108272"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polynomial NARX-based nonlinear model predictive control of modular chemical systems\",\"authors\":\"Anastasia Nikolakopoulou, Richard D. Braatz\",\"doi\":\"10.1016/j.compchemeng.2023.108272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The design of control systems for modular chemical systems typically requires the identification of nonlinear dynamic<span><span> models. Mechanistic models for modular chemical systems are typically of high order, which results in high online computational cost when the models are incorporated into the nonlinear </span>model predictive control<span> (NMPC) formulations developed for explicitly taking constraints into account. This article proposes the use of a particular class of nonlinear input–output models, polynomial nonlinear-autoregressive-with-exogenous-inputs (NARX) models, in the NMPC formulations. A machine learning algorithm, elastic net, is used to select which terms to include within the NARX polynomial series representation. The approach for constructing sparse predictive models and their use in real-time implementable NMPC are demonstrated in a two-input two-output chemical reactor case study. The Julia programming language is used to solve the NMPC optimization problem, resulting in low online computational cost.</span></span></p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"177 \",\"pages\":\"Article 108272\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135423001424\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423001424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Polynomial NARX-based nonlinear model predictive control of modular chemical systems
The design of control systems for modular chemical systems typically requires the identification of nonlinear dynamic models. Mechanistic models for modular chemical systems are typically of high order, which results in high online computational cost when the models are incorporated into the nonlinear model predictive control (NMPC) formulations developed for explicitly taking constraints into account. This article proposes the use of a particular class of nonlinear input–output models, polynomial nonlinear-autoregressive-with-exogenous-inputs (NARX) models, in the NMPC formulations. A machine learning algorithm, elastic net, is used to select which terms to include within the NARX polynomial series representation. The approach for constructing sparse predictive models and their use in real-time implementable NMPC are demonstrated in a two-input two-output chemical reactor case study. The Julia programming language is used to solve the NMPC optimization problem, resulting in low online computational cost.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.