利用内源性细胞蛋白进行分子成像。

Pub Date : 2013-01-01
Zhou Jinyuan, Hong Xiaohua
{"title":"利用内源性细胞蛋白进行分子成像。","authors":"Zhou Jinyuan,&nbsp;Hong Xiaohua","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Amide proton transfer (APT) imaging is a novel molecular MRI technique that generates image contrast based on endogenous cellular proteins in tissue. Theoretically, the APT-MRI signal depends primarily on the mobile amide proton concentration and amide proton exchange rates (which are related to tissue pH). The APT technique has been used for non-invasive pH imaging in stroke (where pH drops) and protein content imaging in tumor (where many proteins are overexpressed). Notably, it has been recently demonstrated in animal models that the APT-MRI signal is a unique imaging biomarker to distinguish between radiation necrosis and active tumor. In this paper, we will briefly introduce the basic principle of APT imaging and review its current successful applications for the imaging of stroke and the imaging of brain tumors in animal models and in patients.</p>","PeriodicalId":89900,"journal":{"name":"","volume":"30 3","pages":"307-321"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176899/pdf/nihms-441495.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular Imaging Using Endogenous Cellular Proteins.\",\"authors\":\"Zhou Jinyuan,&nbsp;Hong Xiaohua\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amide proton transfer (APT) imaging is a novel molecular MRI technique that generates image contrast based on endogenous cellular proteins in tissue. Theoretically, the APT-MRI signal depends primarily on the mobile amide proton concentration and amide proton exchange rates (which are related to tissue pH). The APT technique has been used for non-invasive pH imaging in stroke (where pH drops) and protein content imaging in tumor (where many proteins are overexpressed). Notably, it has been recently demonstrated in animal models that the APT-MRI signal is a unique imaging biomarker to distinguish between radiation necrosis and active tumor. In this paper, we will briefly introduce the basic principle of APT imaging and review its current successful applications for the imaging of stroke and the imaging of brain tumors in animal models and in patients.</p>\",\"PeriodicalId\":89900,\"journal\":{\"name\":\"\",\"volume\":\"30 3\",\"pages\":\"307-321\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176899/pdf/nihms-441495.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1089","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

酰胺质子转移(APT)成像是一种基于组织内源性细胞蛋白产生图像对比度的新型分子MRI技术。理论上,APT-MRI信号主要取决于可移动的酰胺质子浓度和酰胺质子交换率(与组织pH值有关)。APT技术已被用于脑卒中(pH值下降)的无创pH成像和肿瘤(许多蛋白质过表达)的蛋白质含量成像。值得注意的是,最近在动物模型中已经证明,APT-MRI信号是区分放射性坏死和活动性肿瘤的独特成像生物标志物。本文将简要介绍APT成像的基本原理,并综述其在脑卒中和脑肿瘤动物模型及患者成像中的成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Imaging Using Endogenous Cellular Proteins.

Amide proton transfer (APT) imaging is a novel molecular MRI technique that generates image contrast based on endogenous cellular proteins in tissue. Theoretically, the APT-MRI signal depends primarily on the mobile amide proton concentration and amide proton exchange rates (which are related to tissue pH). The APT technique has been used for non-invasive pH imaging in stroke (where pH drops) and protein content imaging in tumor (where many proteins are overexpressed). Notably, it has been recently demonstrated in animal models that the APT-MRI signal is a unique imaging biomarker to distinguish between radiation necrosis and active tumor. In this paper, we will briefly introduce the basic principle of APT imaging and review its current successful applications for the imaging of stroke and the imaging of brain tumors in animal models and in patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1