基于改进牛顿法的多Erlang概率密度肌肉细胞内动作电位经验模型。

IF 2.3 Q3 ENGINEERING, BIOMEDICAL Biomedical Engineering and Computational Biology Pub Date : 2013-04-14 eCollection Date: 2013-01-01 DOI:10.4137/BECB.S11646
Gyutae Kim, Mohammed M Ferdjallah, Frederic D McKenzie
{"title":"基于改进牛顿法的多Erlang概率密度肌肉细胞内动作电位经验模型。","authors":"Gyutae Kim,&nbsp;Mohammed M Ferdjallah,&nbsp;Frederic D McKenzie","doi":"10.4137/BECB.S11646","DOIUrl":null,"url":null,"abstract":"<p><p>The convolution of the transmembrane current of an excitable cell and a weighting function generates a single fiber action potential (SFAP) model by using the volume conductor theory. Here, we propose an empirical muscle IAP model with multiple Erlang probability density functions (PDFs) based on a modified Newton method. In addition, we generate SFAPs based on our IAP model and referent sources, and use the peak-to-peak ratios (PPRs) of SFAPs for model verification. Through this verification, we find that the relation between an IAP profile and the PPR of its SFAP is consistent with some previous studies, and our IAP model shows close profiles to the referent sources. Moreover, we simulate and discuss some possible ionic activities by using the Erlang PDFs in our IAP model, which might present the underlying activities of ions or their channels during an IAP. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S11646","citationCount":"2","resultStr":"{\"title\":\"An Empirical Muscle Intracellular Action Potential Model with Multiple Erlang Probability Density Functions based on a Modified Newton Method.\",\"authors\":\"Gyutae Kim,&nbsp;Mohammed M Ferdjallah,&nbsp;Frederic D McKenzie\",\"doi\":\"10.4137/BECB.S11646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The convolution of the transmembrane current of an excitable cell and a weighting function generates a single fiber action potential (SFAP) model by using the volume conductor theory. Here, we propose an empirical muscle IAP model with multiple Erlang probability density functions (PDFs) based on a modified Newton method. In addition, we generate SFAPs based on our IAP model and referent sources, and use the peak-to-peak ratios (PPRs) of SFAPs for model verification. Through this verification, we find that the relation between an IAP profile and the PPR of its SFAP is consistent with some previous studies, and our IAP model shows close profiles to the referent sources. Moreover, we simulate and discuss some possible ionic activities by using the Erlang PDFs in our IAP model, which might present the underlying activities of ions or their channels during an IAP. </p>\",\"PeriodicalId\":42484,\"journal\":{\"name\":\"Biomedical Engineering and Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4137/BECB.S11646\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/BECB.S11646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BECB.S11646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

利用体积导体理论,将可兴奋细胞的跨膜电流与加权函数进行卷积,得到单纤维动作电位模型。在这里,我们提出了一个基于改进牛顿方法的具有多个Erlang概率密度函数(pdf)的经验肌肉IAP模型。此外,我们基于我们的IAP模型和参考源生成SFAPs,并使用SFAPs的峰峰比(ppr)进行模型验证。通过验证,我们发现一个IAP profile与其SFAP的PPR之间的关系与之前的一些研究是一致的,我们的IAP模型与参考来源表现出接近的profile。此外,我们通过在IAP模型中使用Erlang pdf来模拟和讨论一些可能的离子活动,这些活动可能会呈现IAP期间离子或其通道的潜在活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Muscle Intracellular Action Potential Model with Multiple Erlang Probability Density Functions based on a Modified Newton Method.

The convolution of the transmembrane current of an excitable cell and a weighting function generates a single fiber action potential (SFAP) model by using the volume conductor theory. Here, we propose an empirical muscle IAP model with multiple Erlang probability density functions (PDFs) based on a modified Newton method. In addition, we generate SFAPs based on our IAP model and referent sources, and use the peak-to-peak ratios (PPRs) of SFAPs for model verification. Through this verification, we find that the relation between an IAP profile and the PPR of its SFAP is consistent with some previous studies, and our IAP model shows close profiles to the referent sources. Moreover, we simulate and discuss some possible ionic activities by using the Erlang PDFs in our IAP model, which might present the underlying activities of ions or their channels during an IAP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊最新文献
A Physical Framework to Study the Effect of Magnetic Fields on the Spike-Time Coding. On Mechanical Behavior and Characterization of Soft Tissues. Construction of Prognostic Prediction Models for Colorectal Cancer Based on Ferroptosis-Related Genes: A Multi-Dataset and Multi-Model Analysis. Commentary on "Large-Scale Pancreatic Cancer Detection via Non-Contrast CT and Deep Learning". Correspondence to "Conceptualizing Patient as an Organization with the Adoption of Digital Health".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1