{"title":"在水下呼吸空气和富氧空气造成的气体麻醉损害。","authors":"Malcolm B Hobbs","doi":"10.3357/ASEM.4003.2014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nitrogen (N2) in air causes cognitive impairment from gas narcosis when breathed at increased ambient pressures. This impairment might be reduced by using enriched air nitrox (EANx) mixtures, which have a higher oxygen and lower N2 content compared to air. This study aimed to investigate if divers differed in memory ability and self-assessment when breathing air and EANx30.</p><p><strong>Methods: </strong>The effect of depth (shallow vs. deep) and breathing gas (air vs. EANx30) on memory ability and subjective ratings of impairment was compared in 20 divers.</p><p><strong>Results: </strong>Memory performance was significantly worse in deep water (Air: M = 22.1%, SD = 21.7%; EANx30: M = 22.1%, SD = 17.2%) compared to shallow water (Air: M = 29.2%, SD = 18.3%; EANx30: M = 33.3%, SD = 18.2%), but this impairment did not differ significantly between air and EANx30. Subjective ratings of impairment increased significantly from shallow water (Air: M = 5.2, SD = 5.9; EANx30: M = 3.0, SD = 4.4) to deep water (Air: M = 36.8, SD = 25.3; EANx30: M = 24.8, SD = 16.1) when breathing both air and EANx30. However, ratings were significantly lower when breathing EANx30 compared to air when in the deep water.</p><p><strong>Discussion: </strong>It was concluded EANx30 does not reduce narcotic impairment over air. Additionally, divers were able to make a correct global self-assessment they were impaired by narcosis, but were unable to make a finer assessment, leading them to erroneously believe that EANx30 was less narcotic than air.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1121-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4003.2014","citationCount":"6","resultStr":"{\"title\":\"Impairment from gas narcosis when breathing air and enriched air nitrox underwater.\",\"authors\":\"Malcolm B Hobbs\",\"doi\":\"10.3357/ASEM.4003.2014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Nitrogen (N2) in air causes cognitive impairment from gas narcosis when breathed at increased ambient pressures. This impairment might be reduced by using enriched air nitrox (EANx) mixtures, which have a higher oxygen and lower N2 content compared to air. This study aimed to investigate if divers differed in memory ability and self-assessment when breathing air and EANx30.</p><p><strong>Methods: </strong>The effect of depth (shallow vs. deep) and breathing gas (air vs. EANx30) on memory ability and subjective ratings of impairment was compared in 20 divers.</p><p><strong>Results: </strong>Memory performance was significantly worse in deep water (Air: M = 22.1%, SD = 21.7%; EANx30: M = 22.1%, SD = 17.2%) compared to shallow water (Air: M = 29.2%, SD = 18.3%; EANx30: M = 33.3%, SD = 18.2%), but this impairment did not differ significantly between air and EANx30. Subjective ratings of impairment increased significantly from shallow water (Air: M = 5.2, SD = 5.9; EANx30: M = 3.0, SD = 4.4) to deep water (Air: M = 36.8, SD = 25.3; EANx30: M = 24.8, SD = 16.1) when breathing both air and EANx30. However, ratings were significantly lower when breathing EANx30 compared to air when in the deep water.</p><p><strong>Discussion: </strong>It was concluded EANx30 does not reduce narcotic impairment over air. Additionally, divers were able to make a correct global self-assessment they were impaired by narcosis, but were unable to make a finer assessment, leading them to erroneously believe that EANx30 was less narcotic than air.</p>\",\"PeriodicalId\":8676,\"journal\":{\"name\":\"Aviation, space, and environmental medicine\",\"volume\":\" \",\"pages\":\"1121-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3357/ASEM.4003.2014\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aviation, space, and environmental medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3357/ASEM.4003.2014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation, space, and environmental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3357/ASEM.4003.2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impairment from gas narcosis when breathing air and enriched air nitrox underwater.
Background: Nitrogen (N2) in air causes cognitive impairment from gas narcosis when breathed at increased ambient pressures. This impairment might be reduced by using enriched air nitrox (EANx) mixtures, which have a higher oxygen and lower N2 content compared to air. This study aimed to investigate if divers differed in memory ability and self-assessment when breathing air and EANx30.
Methods: The effect of depth (shallow vs. deep) and breathing gas (air vs. EANx30) on memory ability and subjective ratings of impairment was compared in 20 divers.
Results: Memory performance was significantly worse in deep water (Air: M = 22.1%, SD = 21.7%; EANx30: M = 22.1%, SD = 17.2%) compared to shallow water (Air: M = 29.2%, SD = 18.3%; EANx30: M = 33.3%, SD = 18.2%), but this impairment did not differ significantly between air and EANx30. Subjective ratings of impairment increased significantly from shallow water (Air: M = 5.2, SD = 5.9; EANx30: M = 3.0, SD = 4.4) to deep water (Air: M = 36.8, SD = 25.3; EANx30: M = 24.8, SD = 16.1) when breathing both air and EANx30. However, ratings were significantly lower when breathing EANx30 compared to air when in the deep water.
Discussion: It was concluded EANx30 does not reduce narcotic impairment over air. Additionally, divers were able to make a correct global self-assessment they were impaired by narcosis, but were unable to make a finer assessment, leading them to erroneously believe that EANx30 was less narcotic than air.