{"title":"肌肉电刺激服的防护效果不如标准的防护服。。","authors":"Ulf I Balldin, John A Gibbons","doi":"10.3357/ASEM.4082.2014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>At +1 Gz, electrical muscle stimulation (EMS) has been shown to increase systemic blood pressure similarly to a standard G-suit or lower body muscle straining. It was hypothesized that EMS might improve G protection at increased G levels.</p><p><strong>Methods: </strong>An EMS suit was developed with electrodes over the calves, thighs, gluteal, and abdominal muscles. Using nine subjects, the EMS suit was compared to a standard five-bladder G-suit during various G profiles up to +9 Gz in a human-rated centrifuge with EMS activated by electrical muscle stimulators at G levels at or above +4 Gz. The optimal EMS stimulation for a solid muscle contraction was determined for each muscle group in each subject prior to the G exposures.</p><p><strong>Results: </strong>The mean maximal G level attained in the standard suit was 1.1 G higher during a relaxed gradual onset profile, 1.5 G higher during a relaxed rapid onset profile, and 2.0 G higher during a straining rapid onset profile when compared to the EMS suit. During a simulated aerial combat maneuver (SACM) ride, duration was 46 s longer with the standard suit compared to the EMS. During the SACM, the average heart rate was 23 bpm lower with the standard suit compared to EMS. All of the above differences were statistically significant. Finally, there were four G-LOCs with the EMS and none with the standard suit.</p><p><strong>Conclusion: </strong>The tested EMS suit did not give sufficient G protection at high Gs for pilots, nor substitute for a standard G-suit, as indicated by lower G protection and the episodes of G-LOC.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1071-7"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4082.2014","citationCount":"1","resultStr":"{\"title\":\"Inferior g protection with an electrical muscle stimulation suit compared to a standard g-suit.\",\"authors\":\"Ulf I Balldin, John A Gibbons\",\"doi\":\"10.3357/ASEM.4082.2014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>At +1 Gz, electrical muscle stimulation (EMS) has been shown to increase systemic blood pressure similarly to a standard G-suit or lower body muscle straining. It was hypothesized that EMS might improve G protection at increased G levels.</p><p><strong>Methods: </strong>An EMS suit was developed with electrodes over the calves, thighs, gluteal, and abdominal muscles. Using nine subjects, the EMS suit was compared to a standard five-bladder G-suit during various G profiles up to +9 Gz in a human-rated centrifuge with EMS activated by electrical muscle stimulators at G levels at or above +4 Gz. The optimal EMS stimulation for a solid muscle contraction was determined for each muscle group in each subject prior to the G exposures.</p><p><strong>Results: </strong>The mean maximal G level attained in the standard suit was 1.1 G higher during a relaxed gradual onset profile, 1.5 G higher during a relaxed rapid onset profile, and 2.0 G higher during a straining rapid onset profile when compared to the EMS suit. During a simulated aerial combat maneuver (SACM) ride, duration was 46 s longer with the standard suit compared to the EMS. During the SACM, the average heart rate was 23 bpm lower with the standard suit compared to EMS. All of the above differences were statistically significant. Finally, there were four G-LOCs with the EMS and none with the standard suit.</p><p><strong>Conclusion: </strong>The tested EMS suit did not give sufficient G protection at high Gs for pilots, nor substitute for a standard G-suit, as indicated by lower G protection and the episodes of G-LOC.</p>\",\"PeriodicalId\":8676,\"journal\":{\"name\":\"Aviation, space, and environmental medicine\",\"volume\":\" \",\"pages\":\"1071-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3357/ASEM.4082.2014\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aviation, space, and environmental medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3357/ASEM.4082.2014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation, space, and environmental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3357/ASEM.4082.2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inferior g protection with an electrical muscle stimulation suit compared to a standard g-suit.
Background: At +1 Gz, electrical muscle stimulation (EMS) has been shown to increase systemic blood pressure similarly to a standard G-suit or lower body muscle straining. It was hypothesized that EMS might improve G protection at increased G levels.
Methods: An EMS suit was developed with electrodes over the calves, thighs, gluteal, and abdominal muscles. Using nine subjects, the EMS suit was compared to a standard five-bladder G-suit during various G profiles up to +9 Gz in a human-rated centrifuge with EMS activated by electrical muscle stimulators at G levels at or above +4 Gz. The optimal EMS stimulation for a solid muscle contraction was determined for each muscle group in each subject prior to the G exposures.
Results: The mean maximal G level attained in the standard suit was 1.1 G higher during a relaxed gradual onset profile, 1.5 G higher during a relaxed rapid onset profile, and 2.0 G higher during a straining rapid onset profile when compared to the EMS suit. During a simulated aerial combat maneuver (SACM) ride, duration was 46 s longer with the standard suit compared to the EMS. During the SACM, the average heart rate was 23 bpm lower with the standard suit compared to EMS. All of the above differences were statistically significant. Finally, there were four G-LOCs with the EMS and none with the standard suit.
Conclusion: The tested EMS suit did not give sufficient G protection at high Gs for pilots, nor substitute for a standard G-suit, as indicated by lower G protection and the episodes of G-LOC.