基因组学中多重检测问题的p值校准。

Pub Date : 2014-12-01 DOI:10.1515/sagmb-2013-0074
John P Ferguson, Dean Palejev
{"title":"基因组学中多重检测问题的p值校准。","authors":"John P Ferguson,&nbsp;Dean Palejev","doi":"10.1515/sagmb-2013-0074","DOIUrl":null,"url":null,"abstract":"<p><p>Conservative statistical tests are often used in complex multiple testing settings in which computing the type I error may be difficult. In such tests, the reported p-value for a hypothesis can understate the evidence against the null hypothesis and consequently statistical power may be lost. False Discovery Rate adjustments, used in multiple comparison settings, can worsen the unfavorable effect. We present a computationally efficient and test-agnostic calibration technique that can substantially reduce the conservativeness of such tests. As a consequence, a lower sample size might be sufficient to reject the null hypothesis for true alternatives, and experimental costs can be lowered. We apply the calibration technique to the results of DESeq, a popular method for detecting differentially expressed genes from RNA sequencing data. The increase in power may be particularly high in small sample size experiments, often used in preliminary experiments and funding applications.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2013-0074","citationCount":"1","resultStr":"{\"title\":\"P-value calibration for multiple testing problems in genomics.\",\"authors\":\"John P Ferguson,&nbsp;Dean Palejev\",\"doi\":\"10.1515/sagmb-2013-0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conservative statistical tests are often used in complex multiple testing settings in which computing the type I error may be difficult. In such tests, the reported p-value for a hypothesis can understate the evidence against the null hypothesis and consequently statistical power may be lost. False Discovery Rate adjustments, used in multiple comparison settings, can worsen the unfavorable effect. We present a computationally efficient and test-agnostic calibration technique that can substantially reduce the conservativeness of such tests. As a consequence, a lower sample size might be sufficient to reject the null hypothesis for true alternatives, and experimental costs can be lowered. We apply the calibration technique to the results of DESeq, a popular method for detecting differentially expressed genes from RNA sequencing data. The increase in power may be particularly high in small sample size experiments, often used in preliminary experiments and funding applications.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2013-0074\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2013-0074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2013-0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

保守统计检验通常用于复杂的多重测试设置,其中计算第一类误差可能很困难。在这样的检验中,假设的报告p值可能低估了反对原假设的证据,因此可能会失去统计能力。在多个比较设置中使用的虚假发现率调整可能会恶化不利影响。我们提出了一种计算效率高且与测试无关的校准技术,可以大大降低此类测试的保守性。因此,较低的样本量可能足以拒绝真实替代方案的零假设,并且可以降低实验成本。我们将校准技术应用于DESeq的结果,DESeq是一种从RNA测序数据中检测差异表达基因的流行方法。在小样本实验中,功率的增加可能特别高,通常用于初步实验和资助应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
P-value calibration for multiple testing problems in genomics.

Conservative statistical tests are often used in complex multiple testing settings in which computing the type I error may be difficult. In such tests, the reported p-value for a hypothesis can understate the evidence against the null hypothesis and consequently statistical power may be lost. False Discovery Rate adjustments, used in multiple comparison settings, can worsen the unfavorable effect. We present a computationally efficient and test-agnostic calibration technique that can substantially reduce the conservativeness of such tests. As a consequence, a lower sample size might be sufficient to reject the null hypothesis for true alternatives, and experimental costs can be lowered. We apply the calibration technique to the results of DESeq, a popular method for detecting differentially expressed genes from RNA sequencing data. The increase in power may be particularly high in small sample size experiments, often used in preliminary experiments and funding applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1