使用域适应建模病理解剖的4D变化:使用肿瘤数据库分析TBI成像。

Bo Wang, Marcel Prastawa, Avishek Saha, Suyash P Awate, Andrei Irimia, Micah C Chambers, Paul M Vespa, John D Van Horn, Valerio Pascucci, Guido Gerig
{"title":"使用域适应建模病理解剖的4D变化:使用肿瘤数据库分析TBI成像。","authors":"Bo Wang,&nbsp;Marcel Prastawa,&nbsp;Avishek Saha,&nbsp;Suyash P Awate,&nbsp;Andrei Irimia,&nbsp;Micah C Chambers,&nbsp;Paul M Vespa,&nbsp;John D Van Horn,&nbsp;Valerio Pascucci,&nbsp;Guido Gerig","doi":"10.1007/978-3-319-02126-3_4","DOIUrl":null,"url":null,"abstract":"<p><p>Analysis of 4D medical images presenting pathology (i.e., lesions) is significantly challenging due to the presence of complex changes over time. Image analysis methods for 4D images with lesions need to account for changes in brain structures due to deformation, as well as the formation and deletion of new structures (e.g., edema, bleeding) due to the physiological processes associated with damage, intervention, and recovery. We propose a novel framework that models 4D changes in pathological anatomy across time, and provides explicit mapping from a healthy template to subjects with pathology. Moreover, our framework uses transfer learning to leverage rich information from a known source domain, where we have a collection of completely segmented images, to yield effective appearance models for the input target domain. The automatic 4D segmentation method uses a novel domain adaptation technique for generative kernel density models to transfer information between different domains, resulting in a fully automatic method that requires no user interaction. We demonstrate the effectiveness of our novel approach with the analysis of 4D images of traumatic brain injury (TBI), using a synthetic tumor database as the source domain.</p>","PeriodicalId":90659,"journal":{"name":"Multimodal brain image analysis : third International Workshop, MBIA 2013, held in conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013 : proceedings. MBIA (Workshop) (3rd : 2013 : Nagoya-shi, Japan)","volume":"8159 ","pages":"31-39"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-02126-3_4","citationCount":"10","resultStr":"{\"title\":\"Modeling 4D Changes in Pathological Anatomy using Domain Adaptation: Analysis of TBI Imaging using a Tumor Database.\",\"authors\":\"Bo Wang,&nbsp;Marcel Prastawa,&nbsp;Avishek Saha,&nbsp;Suyash P Awate,&nbsp;Andrei Irimia,&nbsp;Micah C Chambers,&nbsp;Paul M Vespa,&nbsp;John D Van Horn,&nbsp;Valerio Pascucci,&nbsp;Guido Gerig\",\"doi\":\"10.1007/978-3-319-02126-3_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analysis of 4D medical images presenting pathology (i.e., lesions) is significantly challenging due to the presence of complex changes over time. Image analysis methods for 4D images with lesions need to account for changes in brain structures due to deformation, as well as the formation and deletion of new structures (e.g., edema, bleeding) due to the physiological processes associated with damage, intervention, and recovery. We propose a novel framework that models 4D changes in pathological anatomy across time, and provides explicit mapping from a healthy template to subjects with pathology. Moreover, our framework uses transfer learning to leverage rich information from a known source domain, where we have a collection of completely segmented images, to yield effective appearance models for the input target domain. The automatic 4D segmentation method uses a novel domain adaptation technique for generative kernel density models to transfer information between different domains, resulting in a fully automatic method that requires no user interaction. We demonstrate the effectiveness of our novel approach with the analysis of 4D images of traumatic brain injury (TBI), using a synthetic tumor database as the source domain.</p>\",\"PeriodicalId\":90659,\"journal\":{\"name\":\"Multimodal brain image analysis : third International Workshop, MBIA 2013, held in conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013 : proceedings. MBIA (Workshop) (3rd : 2013 : Nagoya-shi, Japan)\",\"volume\":\"8159 \",\"pages\":\"31-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-02126-3_4\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal brain image analysis : third International Workshop, MBIA 2013, held in conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013 : proceedings. MBIA (Workshop) (3rd : 2013 : Nagoya-shi, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-02126-3_4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal brain image analysis : third International Workshop, MBIA 2013, held in conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013 : proceedings. MBIA (Workshop) (3rd : 2013 : Nagoya-shi, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-02126-3_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于随着时间的推移存在复杂的变化,因此对呈现病理(即病变)的4D医学图像的分析具有很大的挑战性。对于有病变的4D图像,图像分析方法需要考虑到脑结构因变形而发生的变化,以及与损伤、干预和恢复相关的生理过程所导致的新结构的形成和缺失(如水肿、出血)。我们提出了一个新的框架来模拟病理解剖随时间的4D变化,并提供从健康模板到病理受试者的明确映射。此外,我们的框架使用迁移学习来利用来自已知源域的丰富信息,其中我们有一组完全分割的图像,从而为输入目标域产生有效的外观模型。自动四维分割方法采用了一种新颖的生成核密度模型域自适应技术,在不同域之间传递信息,实现了不需要用户交互的全自动分割方法。我们通过使用合成肿瘤数据库作为源域,对创伤性脑损伤(TBI)的4D图像进行分析,证明了我们的新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling 4D Changes in Pathological Anatomy using Domain Adaptation: Analysis of TBI Imaging using a Tumor Database.

Analysis of 4D medical images presenting pathology (i.e., lesions) is significantly challenging due to the presence of complex changes over time. Image analysis methods for 4D images with lesions need to account for changes in brain structures due to deformation, as well as the formation and deletion of new structures (e.g., edema, bleeding) due to the physiological processes associated with damage, intervention, and recovery. We propose a novel framework that models 4D changes in pathological anatomy across time, and provides explicit mapping from a healthy template to subjects with pathology. Moreover, our framework uses transfer learning to leverage rich information from a known source domain, where we have a collection of completely segmented images, to yield effective appearance models for the input target domain. The automatic 4D segmentation method uses a novel domain adaptation technique for generative kernel density models to transfer information between different domains, resulting in a fully automatic method that requires no user interaction. We demonstrate the effectiveness of our novel approach with the analysis of 4D images of traumatic brain injury (TBI), using a synthetic tumor database as the source domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping Dynamic Changes in Ventricular Volume onto Baseline Cortical Surfaces in Normal Aging, MCI, and Alzheimer's Disease. A Dynamical Clustering Model of Brain Connectivity Inspired by the N -Body Problem. Modeling 4D Changes in Pathological Anatomy using Domain Adaptation: Analysis of TBI Imaging using a Tumor Database. PARP1 gene variation and microglial activity on [11C]PBR28 PET in older adults at risk for Alzheimer's disease. A Graph-Based Integration of Multimodal Brain Imaging Data for the Detection of Early Mild Cognitive Impairment (E-MCI).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1