{"title":"J-147一种治疗神经退行性疾病的新型肼先导化合物:CeeTox™安全性和遗传毒性分析","authors":"Paul A Lapchak, Rene Bombien, Padmesh S Rajput","doi":"10.4172/2155-9562.1000158","DOIUrl":null,"url":null,"abstract":"<p><p>J-147 is a broad spectrum neuroprotective phenyl hydrazide compound with significant neurotrophic properties related to the induction of brain-derived neurotrophic factor (BDNF). Because this molecule is pleiotropic, it may have substantial utility in the treatment of a wide range of neurodegenerative diseases including acute ischemic stroke (AIS), traumatic brain injury(TBI), and Alzheimer's disease(AD) where both neuroprotection and neurotrophism would be beneficial. Because of the pleiotropic actions of J-147, we sought to determine the safety profile of the drug using multiple assay analysis. For CeeTox analyses, we used a rat hepatoma cell line (H4IIE) resulted in estimated C<sub>Tox</sub> value (i.e.: sustained concentration expected to produce toxicity in a 14 day repeat dosing study) of 90 μM for J-147. The CeeTox panel shows that J-147 produced some adverse effects on cellular activities, in particular mitochondrial function, but only with high concentrations of the drug. J-147 was also not genetoxic with or without Aroclor-1254 treatment. For J-147, based upon extensive neuroprotection assay data previously published, and the CeeTox assay (C<sub>Tox</sub> value of 90 μM) in this study, we estimated in vitro neuroprotection efficacy (EC<sub>50</sub> range 0.06-0.115 μM)/toxicity ratio is 782.6-1500 fold and the neurotrophism (EC<sub>50</sub> range 0.025 μM)/toxicity ratio is 3600, suggesting that there is a significant therapeutic safety window for J-147 and that it should be further developed as a novel neuroprotective-neurotrophic agent to treat neurodegenerative disease taking into account current National Institute of Neurological Disorders and Stroke (NINDS) RIGOR guidelines.</p>","PeriodicalId":16495,"journal":{"name":"Journal of neurology & neurophysiology","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2155-9562.1000158","citationCount":"6","resultStr":"{\"title\":\"J-147 a Novel Hydrazide Lead Compound to Treat Neurodegeneration: CeeTox<sup>™</sup> Safety and Genotoxicity Analysis.\",\"authors\":\"Paul A Lapchak, Rene Bombien, Padmesh S Rajput\",\"doi\":\"10.4172/2155-9562.1000158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>J-147 is a broad spectrum neuroprotective phenyl hydrazide compound with significant neurotrophic properties related to the induction of brain-derived neurotrophic factor (BDNF). Because this molecule is pleiotropic, it may have substantial utility in the treatment of a wide range of neurodegenerative diseases including acute ischemic stroke (AIS), traumatic brain injury(TBI), and Alzheimer's disease(AD) where both neuroprotection and neurotrophism would be beneficial. Because of the pleiotropic actions of J-147, we sought to determine the safety profile of the drug using multiple assay analysis. For CeeTox analyses, we used a rat hepatoma cell line (H4IIE) resulted in estimated C<sub>Tox</sub> value (i.e.: sustained concentration expected to produce toxicity in a 14 day repeat dosing study) of 90 μM for J-147. The CeeTox panel shows that J-147 produced some adverse effects on cellular activities, in particular mitochondrial function, but only with high concentrations of the drug. J-147 was also not genetoxic with or without Aroclor-1254 treatment. For J-147, based upon extensive neuroprotection assay data previously published, and the CeeTox assay (C<sub>Tox</sub> value of 90 μM) in this study, we estimated in vitro neuroprotection efficacy (EC<sub>50</sub> range 0.06-0.115 μM)/toxicity ratio is 782.6-1500 fold and the neurotrophism (EC<sub>50</sub> range 0.025 μM)/toxicity ratio is 3600, suggesting that there is a significant therapeutic safety window for J-147 and that it should be further developed as a novel neuroprotective-neurotrophic agent to treat neurodegenerative disease taking into account current National Institute of Neurological Disorders and Stroke (NINDS) RIGOR guidelines.</p>\",\"PeriodicalId\":16495,\"journal\":{\"name\":\"Journal of neurology & neurophysiology\",\"volume\":\"4 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2155-9562.1000158\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurology & neurophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-9562.1000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurology & neurophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9562.1000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
J-147 a Novel Hydrazide Lead Compound to Treat Neurodegeneration: CeeTox™ Safety and Genotoxicity Analysis.
J-147 is a broad spectrum neuroprotective phenyl hydrazide compound with significant neurotrophic properties related to the induction of brain-derived neurotrophic factor (BDNF). Because this molecule is pleiotropic, it may have substantial utility in the treatment of a wide range of neurodegenerative diseases including acute ischemic stroke (AIS), traumatic brain injury(TBI), and Alzheimer's disease(AD) where both neuroprotection and neurotrophism would be beneficial. Because of the pleiotropic actions of J-147, we sought to determine the safety profile of the drug using multiple assay analysis. For CeeTox analyses, we used a rat hepatoma cell line (H4IIE) resulted in estimated CTox value (i.e.: sustained concentration expected to produce toxicity in a 14 day repeat dosing study) of 90 μM for J-147. The CeeTox panel shows that J-147 produced some adverse effects on cellular activities, in particular mitochondrial function, but only with high concentrations of the drug. J-147 was also not genetoxic with or without Aroclor-1254 treatment. For J-147, based upon extensive neuroprotection assay data previously published, and the CeeTox assay (CTox value of 90 μM) in this study, we estimated in vitro neuroprotection efficacy (EC50 range 0.06-0.115 μM)/toxicity ratio is 782.6-1500 fold and the neurotrophism (EC50 range 0.025 μM)/toxicity ratio is 3600, suggesting that there is a significant therapeutic safety window for J-147 and that it should be further developed as a novel neuroprotective-neurotrophic agent to treat neurodegenerative disease taking into account current National Institute of Neurological Disorders and Stroke (NINDS) RIGOR guidelines.