Juan S Danobeitia, Arjang Djamali, Luis A Fernandez
{"title":"补体在肾缺血再灌注损伤及纤维化发病机制中的作用。","authors":"Juan S Danobeitia, Arjang Djamali, Luis A Fernandez","doi":"10.1186/1755-1536-7-16","DOIUrl":null,"url":null,"abstract":"<p><p>The complement system is a major component of innate immunity and has been commonly identified as a central element in host defense, clearance of immune complexes, and tissue homeostasis. After ischemia-reperfusion injury (IRI), the complement system is activated by endogenous ligands that trigger proteolytic cleavage of complement components via the classical, lectin and/or alternative pathway. The result is the formation of terminal complement components C3a, C5a, and the membrane attack complex (C5b-9 or MAC), all of which play pivotal roles in the amplification of the inflammatory response, chemotaxis, neutrophil/monocyte recruitment and activation, and direct tubular cell injury. However, recent evidence suggests that complement activity transcends innate host defense and there is increasing data suggesting complement as a regulator in processes such as allo-immunity, stem cell differentiation, tissue repair, and progression to fibrosis. In this review, we discuss recent advances addressing the role of complement as a regulator of IRI and renal fibrosis after organ donation for transplantation. We will also briefly discuss currently approved therapies that target complement activity in kidney ischemia-reperfusion and transplantation. </p>","PeriodicalId":12264,"journal":{"name":"Fibrogenesis & Tissue Repair","volume":"7 ","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1755-1536-7-16","citationCount":"90","resultStr":"{\"title\":\"The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis.\",\"authors\":\"Juan S Danobeitia, Arjang Djamali, Luis A Fernandez\",\"doi\":\"10.1186/1755-1536-7-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The complement system is a major component of innate immunity and has been commonly identified as a central element in host defense, clearance of immune complexes, and tissue homeostasis. After ischemia-reperfusion injury (IRI), the complement system is activated by endogenous ligands that trigger proteolytic cleavage of complement components via the classical, lectin and/or alternative pathway. The result is the formation of terminal complement components C3a, C5a, and the membrane attack complex (C5b-9 or MAC), all of which play pivotal roles in the amplification of the inflammatory response, chemotaxis, neutrophil/monocyte recruitment and activation, and direct tubular cell injury. However, recent evidence suggests that complement activity transcends innate host defense and there is increasing data suggesting complement as a regulator in processes such as allo-immunity, stem cell differentiation, tissue repair, and progression to fibrosis. In this review, we discuss recent advances addressing the role of complement as a regulator of IRI and renal fibrosis after organ donation for transplantation. We will also briefly discuss currently approved therapies that target complement activity in kidney ischemia-reperfusion and transplantation. </p>\",\"PeriodicalId\":12264,\"journal\":{\"name\":\"Fibrogenesis & Tissue Repair\",\"volume\":\"7 \",\"pages\":\"16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1755-1536-7-16\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibrogenesis & Tissue Repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1755-1536-7-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibrogenesis & Tissue Repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1755-1536-7-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis.
The complement system is a major component of innate immunity and has been commonly identified as a central element in host defense, clearance of immune complexes, and tissue homeostasis. After ischemia-reperfusion injury (IRI), the complement system is activated by endogenous ligands that trigger proteolytic cleavage of complement components via the classical, lectin and/or alternative pathway. The result is the formation of terminal complement components C3a, C5a, and the membrane attack complex (C5b-9 or MAC), all of which play pivotal roles in the amplification of the inflammatory response, chemotaxis, neutrophil/monocyte recruitment and activation, and direct tubular cell injury. However, recent evidence suggests that complement activity transcends innate host defense and there is increasing data suggesting complement as a regulator in processes such as allo-immunity, stem cell differentiation, tissue repair, and progression to fibrosis. In this review, we discuss recent advances addressing the role of complement as a regulator of IRI and renal fibrosis after organ donation for transplantation. We will also briefly discuss currently approved therapies that target complement activity in kidney ischemia-reperfusion and transplantation.