绿茶抗氧化及上调SOD1对砷致大鼠DNA断裂及肝细胞凋亡的化学预防作用

Nirmallya Acharyya, Sandip Chattopadhyay, Smarajit Maiti
{"title":"绿茶抗氧化及上调SOD1对砷致大鼠DNA断裂及肝细胞凋亡的化学预防作用","authors":"Nirmallya Acharyya,&nbsp;Sandip Chattopadhyay,&nbsp;Smarajit Maiti","doi":"10.1080/10590501.2014.967061","DOIUrl":null,"url":null,"abstract":"<p><p>Green tea (Camellia sinensis; CS) strongly reverses/prevents arsenic-induced apoptotic hepatic degeneration/micronecrosis and mutagenic DNA damage in in vitro oxidant stress model and in rat as shown by comet assay and histoarchitecture (HE and PAS staining) results. Earlier, we demonstrated a link between carcinogenesis and impaired antioxidant system-associated mutagenic DNA damage in arsenic-exposed human. In this study, arsenic-induced (0.6 ppm/100 g body weight/day for 28 days) impairment of cytosolic superoxide-dismutase (SOD1), catalase, xanthine-oxidase, thiol, and urate activities/levels led to increase in tissue levels of damaging malondialdehyde, conjugated dienes, serum necrotic-marker lactate-dehydrogenase, and metabolic inflammatory-marker c-reactive protein suggesting dysregulation at the transcriptional/signal-transduction level. These are decisively restrained by CS-extract (≥10 mg/ml aqueous) with a restoration of DNA/tissue structure. The structural/functional impairment of dialyzed and centrifugally concentrated (6-8 kd cutoff) hepatic SOD1 via its important Cys modifications by H2O2/arsenite redox-stress and that protection by CS/2-mercaptoethanol are shown in in vitro/in situ studies paralleling the present Swiss-Model-generated rSOD1 structural data. Here, arsenite(3+) incubation (≥10(-8) μM + 10 mM H2O2, 2 hr) is shown for the first time with this low-concentration to initiate breakage in rat hepatic-DNA in vitro whereas, arsenite/H2O2/UV-radiation does not affect DNA separately. Arsenic initiates Fe and Cu ion-associated free-radical reaction cascade in vivo. Here, 10 μM of Cu(2+)/Fe(3+)/As(3+) +H2O2-induced in vitro DNA fragmentation is prevented by CS (≥1 mg/ml), greater than the prevention of ascorbate or tocopherol or DMSO or their combination. Moreover, CS incubation for various time with differentially and already degraded DNA resulted from pre-incubation in 10 μM As(3+)-H2O2 system markedly recovers broken DNA. Present results decisively suggest for the first time that CS and its mixed polyphenols have potent SOD1 protecting, diverse radical-scavenging and antimutagenic activities furthering to DNA protection/therapy in arsenic-induced tissue necrosis/apoptosis. </p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"32 4","pages":"338-61"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2014.967061","citationCount":"25","resultStr":"{\"title\":\"Chemoprevention against arsenic-induced mutagenic DNA breakage and apoptotic liver damage in rat via antioxidant and SOD1 upregulation by green tea (Camellia sinensis) which recovers broken DNA resulted from arsenic-H2O2 related in vitro oxidant stress.\",\"authors\":\"Nirmallya Acharyya,&nbsp;Sandip Chattopadhyay,&nbsp;Smarajit Maiti\",\"doi\":\"10.1080/10590501.2014.967061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Green tea (Camellia sinensis; CS) strongly reverses/prevents arsenic-induced apoptotic hepatic degeneration/micronecrosis and mutagenic DNA damage in in vitro oxidant stress model and in rat as shown by comet assay and histoarchitecture (HE and PAS staining) results. Earlier, we demonstrated a link between carcinogenesis and impaired antioxidant system-associated mutagenic DNA damage in arsenic-exposed human. In this study, arsenic-induced (0.6 ppm/100 g body weight/day for 28 days) impairment of cytosolic superoxide-dismutase (SOD1), catalase, xanthine-oxidase, thiol, and urate activities/levels led to increase in tissue levels of damaging malondialdehyde, conjugated dienes, serum necrotic-marker lactate-dehydrogenase, and metabolic inflammatory-marker c-reactive protein suggesting dysregulation at the transcriptional/signal-transduction level. These are decisively restrained by CS-extract (≥10 mg/ml aqueous) with a restoration of DNA/tissue structure. The structural/functional impairment of dialyzed and centrifugally concentrated (6-8 kd cutoff) hepatic SOD1 via its important Cys modifications by H2O2/arsenite redox-stress and that protection by CS/2-mercaptoethanol are shown in in vitro/in situ studies paralleling the present Swiss-Model-generated rSOD1 structural data. Here, arsenite(3+) incubation (≥10(-8) μM + 10 mM H2O2, 2 hr) is shown for the first time with this low-concentration to initiate breakage in rat hepatic-DNA in vitro whereas, arsenite/H2O2/UV-radiation does not affect DNA separately. Arsenic initiates Fe and Cu ion-associated free-radical reaction cascade in vivo. Here, 10 μM of Cu(2+)/Fe(3+)/As(3+) +H2O2-induced in vitro DNA fragmentation is prevented by CS (≥1 mg/ml), greater than the prevention of ascorbate or tocopherol or DMSO or their combination. Moreover, CS incubation for various time with differentially and already degraded DNA resulted from pre-incubation in 10 μM As(3+)-H2O2 system markedly recovers broken DNA. Present results decisively suggest for the first time that CS and its mixed polyphenols have potent SOD1 protecting, diverse radical-scavenging and antimutagenic activities furthering to DNA protection/therapy in arsenic-induced tissue necrosis/apoptosis. </p>\",\"PeriodicalId\":51085,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"volume\":\"32 4\",\"pages\":\"338-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10590501.2014.967061\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10590501.2014.967061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2014.967061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 25

摘要

绿茶(Camellia sinensis;彗星试验和组织结构(HE和PAS染色)结果显示,CS强烈逆转/阻止砷诱导的体外氧化应激模型和大鼠的凋亡性肝变性/微坏死和诱变性DNA损伤。早些时候,我们证明了砷暴露人类中致癌与抗氧化系统相关的突变性DNA损伤之间的联系。在这项研究中,砷诱导(0.6 ppm/100 g体重/天,持续28天)细胞质超氧化物歧化酶(SOD1)、过氧化氢酶、黄嘌呤氧化酶、硫醇和尿酸活性/水平受损,导致组织中破坏性丙二醛、偶联二烯、血清坏死标志物乳酸脱氢酶和代谢性炎症标志物c反应蛋白水平升高,提示转录/信号转导水平失调。cs提取物(≥10mg /ml水溶液)可以明显抑制这些反应,恢复DNA/组织结构。通过H2O2/亚砷酸盐氧化还原应激对透析和离心浓缩(6-8 kd截止)肝脏SOD1的重要Cys修饰以及CS/2-巯基乙醇的保护作用,体外/原位研究显示了与当前瑞士模型生成的rSOD1结构数据相一致的结构/功能损伤。本研究首次发现,亚砷酸盐(3+)(≥10(-8)μM + 10 mM H2O2, 2小时)在这种低浓度条件下可引起体外大鼠肝DNA的破坏,而亚砷酸盐/H2O2/紫外线辐射对DNA没有单独的影响。砷在体内引发铁和铜离子相关的自由基级联反应。CS(≥1 mg/ml)对10 μM Cu(2+)/Fe(3+)/As(3+) + h2o2诱导的体外DNA断裂的抑制作用大于抗坏血酸、生育酚或DMSO及其组合的抑制作用。此外,在10 μM As(3+)-H2O2体系中,CS孵育不同时间的已降解和已降解的DNA,可以明显恢复断裂的DNA。本研究结果首次明确表明,CS及其混合多酚具有有效的SOD1保护、多种自由基清除和抗诱变活性,进一步促进了砷诱导的组织坏死/凋亡的DNA保护/治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemoprevention against arsenic-induced mutagenic DNA breakage and apoptotic liver damage in rat via antioxidant and SOD1 upregulation by green tea (Camellia sinensis) which recovers broken DNA resulted from arsenic-H2O2 related in vitro oxidant stress.

Green tea (Camellia sinensis; CS) strongly reverses/prevents arsenic-induced apoptotic hepatic degeneration/micronecrosis and mutagenic DNA damage in in vitro oxidant stress model and in rat as shown by comet assay and histoarchitecture (HE and PAS staining) results. Earlier, we demonstrated a link between carcinogenesis and impaired antioxidant system-associated mutagenic DNA damage in arsenic-exposed human. In this study, arsenic-induced (0.6 ppm/100 g body weight/day for 28 days) impairment of cytosolic superoxide-dismutase (SOD1), catalase, xanthine-oxidase, thiol, and urate activities/levels led to increase in tissue levels of damaging malondialdehyde, conjugated dienes, serum necrotic-marker lactate-dehydrogenase, and metabolic inflammatory-marker c-reactive protein suggesting dysregulation at the transcriptional/signal-transduction level. These are decisively restrained by CS-extract (≥10 mg/ml aqueous) with a restoration of DNA/tissue structure. The structural/functional impairment of dialyzed and centrifugally concentrated (6-8 kd cutoff) hepatic SOD1 via its important Cys modifications by H2O2/arsenite redox-stress and that protection by CS/2-mercaptoethanol are shown in in vitro/in situ studies paralleling the present Swiss-Model-generated rSOD1 structural data. Here, arsenite(3+) incubation (≥10(-8) μM + 10 mM H2O2, 2 hr) is shown for the first time with this low-concentration to initiate breakage in rat hepatic-DNA in vitro whereas, arsenite/H2O2/UV-radiation does not affect DNA separately. Arsenic initiates Fe and Cu ion-associated free-radical reaction cascade in vivo. Here, 10 μM of Cu(2+)/Fe(3+)/As(3+) +H2O2-induced in vitro DNA fragmentation is prevented by CS (≥1 mg/ml), greater than the prevention of ascorbate or tocopherol or DMSO or their combination. Moreover, CS incubation for various time with differentially and already degraded DNA resulted from pre-incubation in 10 μM As(3+)-H2O2 system markedly recovers broken DNA. Present results decisively suggest for the first time that CS and its mixed polyphenols have potent SOD1 protecting, diverse radical-scavenging and antimutagenic activities furthering to DNA protection/therapy in arsenic-induced tissue necrosis/apoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
>24 weeks
期刊介绍: Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.
期刊最新文献
Polycyclic aromatic hydrocarbons as a potential source of carcinogenicity of mate. Enhanced generation of reactive oxygen species and photocatalytic activity by Pt-based metallic nanostructures: the composition matters. Intrinsic catalytic activity of rhodium nanoparticles with respect to reactive oxygen species scavenging: implication for diminishing cytotoxicity. Electrochemical detection and quantification of Reactive Red 195 dyes on graphene modified glassy carbon electrode. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1