协同调节网络方法鉴定的肺癌中8个microrna的致癌和预后潜力。

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2014-01-01 Epub Date: 2014-12-25 DOI:10.1504/IJCBDD.2014.066572
Ramkrishna Mitra, Zhongming Zhao
{"title":"协同调节网络方法鉴定的肺癌中8个microrna的致癌和预后潜力。","authors":"Ramkrishna Mitra,&nbsp;Zhongming Zhao","doi":"10.1504/IJCBDD.2014.066572","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factors (TFs) and microRNAs (miRNAs), the two main gene regulators in the biological system, control the gene expression at the transcriptional and post-transcriptional level, respectively. However, little is known regarding whether the miRNATF co-regulatory mechanisms, predicted by several studies, truly reflect the molecular interactions in cellular systems. To tackle this important issue, we developed an integrative framework by utilising four independent miRNA and matched mRNA expression profiling datasets to identify reproducible regulations, and demonstrated this approach in non-small cell lung cancer (NSCLC). Our analyses pinpointed several reproducible miRNA-TF co-regulatory networks in NSCLC from which we systematically prioritised eight hub miRNAs that may have strong oncogenic characteristics. Here, we discussed the major findings of our study and explored the oncogenic and prognostic potential of eight prioritised miRNAs through literature-mining based analysis and patient survival analysis. The findings provide additional insights into the miRNA-TF co-regulation in lung cancer. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"7 4","pages":"384-93"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.066572","citationCount":"2","resultStr":"{\"title\":\"The oncogenic and prognostic potential of eight microRNAs identified by a synergetic regulatory network approach in lung cancer.\",\"authors\":\"Ramkrishna Mitra,&nbsp;Zhongming Zhao\",\"doi\":\"10.1504/IJCBDD.2014.066572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcription factors (TFs) and microRNAs (miRNAs), the two main gene regulators in the biological system, control the gene expression at the transcriptional and post-transcriptional level, respectively. However, little is known regarding whether the miRNATF co-regulatory mechanisms, predicted by several studies, truly reflect the molecular interactions in cellular systems. To tackle this important issue, we developed an integrative framework by utilising four independent miRNA and matched mRNA expression profiling datasets to identify reproducible regulations, and demonstrated this approach in non-small cell lung cancer (NSCLC). Our analyses pinpointed several reproducible miRNA-TF co-regulatory networks in NSCLC from which we systematically prioritised eight hub miRNAs that may have strong oncogenic characteristics. Here, we discussed the major findings of our study and explored the oncogenic and prognostic potential of eight prioritised miRNAs through literature-mining based analysis and patient survival analysis. The findings provide additional insights into the miRNA-TF co-regulation in lung cancer. </p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"7 4\",\"pages\":\"384-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.066572\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2014.066572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/12/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2014.066572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 2

摘要

转录因子(Transcription factors, TFs)和microRNAs (microRNAs, miRNAs)是生物系统中两种主要的基因调控因子,分别在转录和转录后水平调控基因的表达。然而,关于几项研究预测的miRNATF共调控机制是否真正反映了细胞系统中的分子相互作用,我们知之甚少。为了解决这一重要问题,我们开发了一个综合框架,利用四个独立的miRNA和匹配的mRNA表达谱数据集来确定可重复的调控,并在非小细胞肺癌(NSCLC)中证明了这种方法。我们的分析确定了NSCLC中几个可重复的miRNA-TF共调控网络,从中我们系统地优先考虑了可能具有强致癌特征的8个枢纽mirna。在这里,我们讨论了我们研究的主要发现,并通过基于文献挖掘的分析和患者生存分析探索了8种优先mirna的致癌和预后潜力。这些发现为肺癌中miRNA-TF的共同调控提供了更多的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The oncogenic and prognostic potential of eight microRNAs identified by a synergetic regulatory network approach in lung cancer.

Transcription factors (TFs) and microRNAs (miRNAs), the two main gene regulators in the biological system, control the gene expression at the transcriptional and post-transcriptional level, respectively. However, little is known regarding whether the miRNATF co-regulatory mechanisms, predicted by several studies, truly reflect the molecular interactions in cellular systems. To tackle this important issue, we developed an integrative framework by utilising four independent miRNA and matched mRNA expression profiling datasets to identify reproducible regulations, and demonstrated this approach in non-small cell lung cancer (NSCLC). Our analyses pinpointed several reproducible miRNA-TF co-regulatory networks in NSCLC from which we systematically prioritised eight hub miRNAs that may have strong oncogenic characteristics. Here, we discussed the major findings of our study and explored the oncogenic and prognostic potential of eight prioritised miRNAs through literature-mining based analysis and patient survival analysis. The findings provide additional insights into the miRNA-TF co-regulation in lung cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1