多囊肾病的治疗进展。

Nephron Clinical Practice Pub Date : 2014-01-01 Epub Date: 2015-01-06 DOI:10.1159/000368244
Cristian Riella, Peter G Czarnecki, Theodore I Steinman
{"title":"多囊肾病的治疗进展。","authors":"Cristian Riella,&nbsp;Peter G Czarnecki,&nbsp;Theodore I Steinman","doi":"10.1159/000368244","DOIUrl":null,"url":null,"abstract":"<p><p>The spectrum of polycystic kidney disease (PKD) comprises a family of inherited syndromes defined by renal cyst formation and growth, progressive renal function loss and variable extrarenal manifestations. The most common form, autosomal-dominant PKD is caused by mutations in one of two genes, PKD1 or PKD2. Recent developments in genomic and proteomic medicine have resulted in the discovery of novel genes implicated in the wide variety of less frequent, recessive PKD syndromes. Cysts are the disease, and overall cystic burden, measured by MRI as total kidney volume, is being established as the best available biomarker of disease progression. Current state-of-the-art therapy is aimed at quality treatment for chronic renal insufficiency and cyst-related complications. Recent therapeutic studies have focused on mechanisms reducing intracellular cyclic AMP levels, blocking the renin-angiotensin-aldosterone system and inhibiting the mTOR-signaling pathway. PKD therapies with vasopressin antagonists and somatostatin analogues result in the reduction of intracellular cAMP levels and have shown limited clinical success, but side effects are prominent. Similarly, mTOR pathway inhibition has not shown significant therapeutic benefits. While the HALT-PKD study will answer questions by the end of 2014 about the utility of renin-angiotensin-aldosterone system blockade and aggressive blood pressure control, the next generation of PKD therapy studies targeting proliferative mechanisms of cyst expansion are already under way. Advances in research on the molecular mechanisms of cystogenesis will help design novel targeted PKD therapies in the future.</p>","PeriodicalId":19094,"journal":{"name":"Nephron Clinical Practice","volume":"128 3-4","pages":"297-302"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000368244","citationCount":"19","resultStr":"{\"title\":\"Therapeutic advances in the treatment of polycystic kidney disease.\",\"authors\":\"Cristian Riella,&nbsp;Peter G Czarnecki,&nbsp;Theodore I Steinman\",\"doi\":\"10.1159/000368244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spectrum of polycystic kidney disease (PKD) comprises a family of inherited syndromes defined by renal cyst formation and growth, progressive renal function loss and variable extrarenal manifestations. The most common form, autosomal-dominant PKD is caused by mutations in one of two genes, PKD1 or PKD2. Recent developments in genomic and proteomic medicine have resulted in the discovery of novel genes implicated in the wide variety of less frequent, recessive PKD syndromes. Cysts are the disease, and overall cystic burden, measured by MRI as total kidney volume, is being established as the best available biomarker of disease progression. Current state-of-the-art therapy is aimed at quality treatment for chronic renal insufficiency and cyst-related complications. Recent therapeutic studies have focused on mechanisms reducing intracellular cyclic AMP levels, blocking the renin-angiotensin-aldosterone system and inhibiting the mTOR-signaling pathway. PKD therapies with vasopressin antagonists and somatostatin analogues result in the reduction of intracellular cAMP levels and have shown limited clinical success, but side effects are prominent. Similarly, mTOR pathway inhibition has not shown significant therapeutic benefits. While the HALT-PKD study will answer questions by the end of 2014 about the utility of renin-angiotensin-aldosterone system blockade and aggressive blood pressure control, the next generation of PKD therapy studies targeting proliferative mechanisms of cyst expansion are already under way. Advances in research on the molecular mechanisms of cystogenesis will help design novel targeted PKD therapies in the future.</p>\",\"PeriodicalId\":19094,\"journal\":{\"name\":\"Nephron Clinical Practice\",\"volume\":\"128 3-4\",\"pages\":\"297-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000368244\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Clinical Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000368244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Clinical Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000368244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

多囊肾病(PKD)包括一个家族的遗传性综合征定义为肾囊肿形成和生长,进行性肾功能丧失和可变的肾外表现。最常见的常染色体显性PKD是由两个基因PKD1或PKD2中的一个突变引起的。基因组学和蛋白质组学医学的最新发展导致发现了与各种不常见的隐性PKD综合征有关的新基因。囊肿就是疾病,而总体囊性负担(通过MRI测量肾脏总体积)正被确立为疾病进展的最佳生物标志物。目前最先进的治疗方法旨在提高慢性肾功能不全和囊肿相关并发症的治疗质量。最近的治疗研究主要集中在降低细胞内环AMP水平、阻断肾素-血管紧张素-醛固酮系统和抑制mtor信号通路的机制上。用抗利尿激素拮抗剂和生长抑素类似物治疗PKD可降低细胞内cAMP水平,临床效果有限,但副作用很突出。同样,mTOR通路抑制也没有显示出显著的治疗效果。虽然HALT-PKD研究将在2014年底之前回答有关肾素-血管紧张素-醛固酮系统阻断和积极血压控制的效用的问题,但针对囊肿扩张的增殖机制的下一代PKD治疗研究已经在进行中。对膀胱发生分子机制的研究进展将有助于未来设计新的靶向PKD治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Therapeutic advances in the treatment of polycystic kidney disease.

The spectrum of polycystic kidney disease (PKD) comprises a family of inherited syndromes defined by renal cyst formation and growth, progressive renal function loss and variable extrarenal manifestations. The most common form, autosomal-dominant PKD is caused by mutations in one of two genes, PKD1 or PKD2. Recent developments in genomic and proteomic medicine have resulted in the discovery of novel genes implicated in the wide variety of less frequent, recessive PKD syndromes. Cysts are the disease, and overall cystic burden, measured by MRI as total kidney volume, is being established as the best available biomarker of disease progression. Current state-of-the-art therapy is aimed at quality treatment for chronic renal insufficiency and cyst-related complications. Recent therapeutic studies have focused on mechanisms reducing intracellular cyclic AMP levels, blocking the renin-angiotensin-aldosterone system and inhibiting the mTOR-signaling pathway. PKD therapies with vasopressin antagonists and somatostatin analogues result in the reduction of intracellular cAMP levels and have shown limited clinical success, but side effects are prominent. Similarly, mTOR pathway inhibition has not shown significant therapeutic benefits. While the HALT-PKD study will answer questions by the end of 2014 about the utility of renin-angiotensin-aldosterone system blockade and aggressive blood pressure control, the next generation of PKD therapy studies targeting proliferative mechanisms of cyst expansion are already under way. Advances in research on the molecular mechanisms of cystogenesis will help design novel targeted PKD therapies in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nephron Clinical Practice
Nephron Clinical Practice 医学-泌尿学与肾脏学
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊最新文献
Comparison of Outcomes of In-Centre Haemodialysis Patients between the 1st and 2nd COVID-19 Outbreak in England, Wales, and Northern Ireland: A UK Renal Registry Analysis Association of Serum Triglycerides and Renal Outcomes among 1.6 Million US Veterans Genetic Deletion of the Stromal Cell Marker CD248 (Endosialin) Protects against the Development of Renal Fibrosis Contents Vol. 128, 2014 Author Index Vol. 127, No. 1-4, 2014
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1