皮质电图运动-图像脑机接口中学习的神经关联。

IF 1.8 Q3 ENGINEERING, BIOMEDICAL Brain-Computer Interfaces Pub Date : 2014-07-01 DOI:10.1080/2326263X.2014.954183
Tim M Blakely, Jared D Olson, Kai J Miller, Rajesh P N Rao, Jeffrey G Ojemann
{"title":"皮质电图运动-图像脑机接口中学习的神经关联。","authors":"Tim M Blakely,&nbsp;Jared D Olson,&nbsp;Kai J Miller,&nbsp;Rajesh P N Rao,&nbsp;Jeffrey G Ojemann","doi":"10.1080/2326263X.2014.954183","DOIUrl":null,"url":null,"abstract":"<p><p>Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75-200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms.</p>","PeriodicalId":45112,"journal":{"name":"Brain-Computer Interfaces","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2326263X.2014.954183","citationCount":"17","resultStr":"{\"title\":\"Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface.\",\"authors\":\"Tim M Blakely,&nbsp;Jared D Olson,&nbsp;Kai J Miller,&nbsp;Rajesh P N Rao,&nbsp;Jeffrey G Ojemann\",\"doi\":\"10.1080/2326263X.2014.954183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75-200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms.</p>\",\"PeriodicalId\":45112,\"journal\":{\"name\":\"Brain-Computer Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/2326263X.2014.954183\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain-Computer Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2326263X.2014.954183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-Computer Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2326263X.2014.954183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 17

摘要

人类受试者可以学习通过调制初级运动(M1)高伽马活动(信号功率在75-200赫兹范围内)来控制一维皮质电图(ECoG)脑机接口(BCI)。然而,在新的脑机接口技能习得过程中,信号的稳定性和动态尚未得到研究。在本研究中,我们报告了脑机接口训练过程中高伽马控制信号演化的3个特征期:初始阶段,任务精度较低,伽马谱中相应的低功率调制;随后是任务精度提高的第二阶段,活动和休息之间的平均功率间隔增加;最后是任务精度高的阶段,功率间隔稳定(或减小),试验间方差减小。这些发现可能会对脑机接口控制算法的设计和实现产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface.

Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75-200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
9.50%
发文量
14
期刊最新文献
A combined EEG motor and speech imagery paradigm with automated successive halving for customizable command selection Toward methodologies for motor imagery enhancement: a tDCS-BCI study Large scale investigation of the effect of gender on mu rhythm suppression in motor imagery brain-computer interfaces Genetic algorithm based deep learning model adaptation for improvising the motor imagery classification Real-time feedback improves imagined 3D primitive object classification from EEG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1