鲁棒剂量-反应曲线估计在高含量筛选数据分析中的应用。

Q2 Decision Sciences Source Code for Biology and Medicine Pub Date : 2014-12-10 eCollection Date: 2014-01-01 DOI:10.1186/s13029-014-0027-x
Thuy Tuong Nguyen, Kyungmin Song, Yury Tsoy, Jin Yeop Kim, Yong-Jun Kwon, Myungjoo Kang, Michael Adsetts Edberg Hansen
{"title":"鲁棒剂量-反应曲线估计在高含量筛选数据分析中的应用。","authors":"Thuy Tuong Nguyen,&nbsp;Kyungmin Song,&nbsp;Yury Tsoy,&nbsp;Jin Yeop Kim,&nbsp;Yong-Jun Kwon,&nbsp;Myungjoo Kang,&nbsp;Michael Adsetts Edberg Hansen","doi":"10.1186/s13029-014-0027-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and method: </strong>Successfully automated sigmoidal curve fitting is highly challenging when applied to large data sets. In this paper, we describe a robust algorithm for fitting sigmoid dose-response curves by estimating four parameters (floor, window, shift, and slope), together with the detection of outliers. We propose two improvements over current methods for curve fitting. The first one is the detection of outliers which is performed during the initialization step with correspondent adjustments of the derivative and error estimation functions. The second aspect is the enhancement of the weighting quality of data points using mean calculation in Tukey's biweight function.</p><p><strong>Results and conclusion: </strong>Automatic curve fitting of 19,236 dose-response experiments shows that our proposed method outperforms the current fitting methods provided by MATLAB®;'s nlinfit function and GraphPad's Prism software.</p>","PeriodicalId":35052,"journal":{"name":"Source Code for Biology and Medicine","volume":"9 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13029-014-0027-x","citationCount":"6","resultStr":"{\"title\":\"Robust dose-response curve estimation applied to high content screening data analysis.\",\"authors\":\"Thuy Tuong Nguyen,&nbsp;Kyungmin Song,&nbsp;Yury Tsoy,&nbsp;Jin Yeop Kim,&nbsp;Yong-Jun Kwon,&nbsp;Myungjoo Kang,&nbsp;Michael Adsetts Edberg Hansen\",\"doi\":\"10.1186/s13029-014-0027-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and method: </strong>Successfully automated sigmoidal curve fitting is highly challenging when applied to large data sets. In this paper, we describe a robust algorithm for fitting sigmoid dose-response curves by estimating four parameters (floor, window, shift, and slope), together with the detection of outliers. We propose two improvements over current methods for curve fitting. The first one is the detection of outliers which is performed during the initialization step with correspondent adjustments of the derivative and error estimation functions. The second aspect is the enhancement of the weighting quality of data points using mean calculation in Tukey's biweight function.</p><p><strong>Results and conclusion: </strong>Automatic curve fitting of 19,236 dose-response experiments shows that our proposed method outperforms the current fitting methods provided by MATLAB®;'s nlinfit function and GraphPad's Prism software.</p>\",\"PeriodicalId\":35052,\"journal\":{\"name\":\"Source Code for Biology and Medicine\",\"volume\":\"9 1\",\"pages\":\"27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13029-014-0027-x\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Source Code for Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13029-014-0027-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Source Code for Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13029-014-0027-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 6

摘要

背景和方法:当应用于大数据集时,成功的自动化s型曲线拟合是极具挑战性的。在本文中,我们描述了一个稳健的算法拟合s型剂量响应曲线,通过估计四个参数(底、窗、位移和斜率),以及检测异常值。我们对当前的曲线拟合方法提出了两个改进。第一个是在初始化阶段进行异常值检测,并对导数和误差估计函数进行相应的调整。第二个方面是在Tukey的双权函数中使用均值计算来提高数据点的加权质量。结果和结论:19236个剂量反应实验的自动曲线拟合表明,我们提出的方法优于目前由MATLAB®的nlinfit函数和GraphPad的Prism软件提供的拟合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust dose-response curve estimation applied to high content screening data analysis.

Background and method: Successfully automated sigmoidal curve fitting is highly challenging when applied to large data sets. In this paper, we describe a robust algorithm for fitting sigmoid dose-response curves by estimating four parameters (floor, window, shift, and slope), together with the detection of outliers. We propose two improvements over current methods for curve fitting. The first one is the detection of outliers which is performed during the initialization step with correspondent adjustments of the derivative and error estimation functions. The second aspect is the enhancement of the weighting quality of data points using mean calculation in Tukey's biweight function.

Results and conclusion: Automatic curve fitting of 19,236 dose-response experiments shows that our proposed method outperforms the current fitting methods provided by MATLAB®;'s nlinfit function and GraphPad's Prism software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Source Code for Biology and Medicine
Source Code for Biology and Medicine Decision Sciences-Information Systems and Management
自引率
0.00%
发文量
0
期刊介绍: Source Code for Biology and Medicine is a peer-reviewed open access, online journal that publishes articles on source code employed over a wide range of applications in biology and medicine. The journal"s aim is to publish source code for distribution and use in the public domain in order to advance biological and medical research. Through this dissemination, it may be possible to shorten the time required for solving certain computational problems for which there is limited source code availability or resources.
期刊最新文献
2DKD: a toolkit for content-based local image search. Computing and graphing probability values of pearson distributions: a SAS/IML macro. iPBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach Social support for collaboration and group awareness in life science research teams. MZPAQ: a FASTQ data compression tool.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1