能量限制对大鼠间接量热及心脏组织氧化应激的影响。

IF 1.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Indian journal of biochemistry & biophysics Pub Date : 2014-10-01
Elisa Ito Kawahara, Nadine Helena Pelegrino Bastos Maués, Klinsmann Carolo dos Santos, Pedro Octávio Barbanera, Camila Pereira Braga, Angélica Henrique Fernandes
{"title":"能量限制对大鼠间接量热及心脏组织氧化应激的影响。","authors":"Elisa Ito Kawahara,&nbsp;Nadine Helena Pelegrino Bastos Maués,&nbsp;Klinsmann Carolo dos Santos,&nbsp;Pedro Octávio Barbanera,&nbsp;Camila Pereira Braga,&nbsp;Angélica Henrique Fernandes","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Caloric restriction, defined as a reduction in calorie intake below ad libitum, without malnutrition can have beneficial effects. In this study, we evaluated the impact of caloric restriction of 30 and 60% on calorimetric parameters and oxidative stress in cardiac tissue in rats. Rats were randomly divided into 3 groups (n = 8): G1 = control; G2 = rats exposed to dietary restriction of 30%; and G3 = rats exposed to dietary restriction of 60%. Energy restriction decreased final body weight, oxidation of carbohydrates and lipid, oxygen consumption (VO2), carbon dioxide production (VCO2), resting metabolic rate (RMR), but elevated respiratory quotient (RQ). G3 animals also displayed an imbalance in the oxidant/antioxidant system, as revealed by the decrease in the lipid hydroperoxide (LH) level and GSH-Px activity in heart tissue. In conclusion, dietary restriction decreased oxidative metabolism, as seen by the colorimetric profiles and controlled oxidative stress in cardiac tissue.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"51 5","pages":"365-71"},"PeriodicalIF":1.5000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy restriction and impact on indirect calorimetry and oxidative stress in cardiac tissue in rat.\",\"authors\":\"Elisa Ito Kawahara,&nbsp;Nadine Helena Pelegrino Bastos Maués,&nbsp;Klinsmann Carolo dos Santos,&nbsp;Pedro Octávio Barbanera,&nbsp;Camila Pereira Braga,&nbsp;Angélica Henrique Fernandes\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Caloric restriction, defined as a reduction in calorie intake below ad libitum, without malnutrition can have beneficial effects. In this study, we evaluated the impact of caloric restriction of 30 and 60% on calorimetric parameters and oxidative stress in cardiac tissue in rats. Rats were randomly divided into 3 groups (n = 8): G1 = control; G2 = rats exposed to dietary restriction of 30%; and G3 = rats exposed to dietary restriction of 60%. Energy restriction decreased final body weight, oxidation of carbohydrates and lipid, oxygen consumption (VO2), carbon dioxide production (VCO2), resting metabolic rate (RMR), but elevated respiratory quotient (RQ). G3 animals also displayed an imbalance in the oxidant/antioxidant system, as revealed by the decrease in the lipid hydroperoxide (LH) level and GSH-Px activity in heart tissue. In conclusion, dietary restriction decreased oxidative metabolism, as seen by the colorimetric profiles and controlled oxidative stress in cardiac tissue.</p>\",\"PeriodicalId\":13281,\"journal\":{\"name\":\"Indian journal of biochemistry & biophysics\",\"volume\":\"51 5\",\"pages\":\"365-71\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of biochemistry & biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在没有营养不良的情况下,热量限制,定义为将卡路里摄入量减少到任意以下,可以产生有益的效果。在这项研究中,我们评估了30%和60%的热量限制对大鼠心脏组织的热量参数和氧化应激的影响。将大鼠随机分为3组(n = 8): G1组为对照组;G2 =饮食限制30%的大鼠;G3 =饮食限制60%的大鼠。能量限制降低了最终体重、碳水化合物和脂质氧化、耗氧量(VO2)、二氧化碳产量(VCO2)、静息代谢率(RMR),但提高了呼吸商(RQ)。G3动物也表现出氧化/抗氧化系统失衡,如心脏组织中脂质过氧化氢(LH)水平和GSH-Px活性下降。综上所述,饮食限制降低了氧化代谢,如比色图所示,并控制了心脏组织的氧化应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy restriction and impact on indirect calorimetry and oxidative stress in cardiac tissue in rat.

Caloric restriction, defined as a reduction in calorie intake below ad libitum, without malnutrition can have beneficial effects. In this study, we evaluated the impact of caloric restriction of 30 and 60% on calorimetric parameters and oxidative stress in cardiac tissue in rats. Rats were randomly divided into 3 groups (n = 8): G1 = control; G2 = rats exposed to dietary restriction of 30%; and G3 = rats exposed to dietary restriction of 60%. Energy restriction decreased final body weight, oxidation of carbohydrates and lipid, oxygen consumption (VO2), carbon dioxide production (VCO2), resting metabolic rate (RMR), but elevated respiratory quotient (RQ). G3 animals also displayed an imbalance in the oxidant/antioxidant system, as revealed by the decrease in the lipid hydroperoxide (LH) level and GSH-Px activity in heart tissue. In conclusion, dietary restriction decreased oxidative metabolism, as seen by the colorimetric profiles and controlled oxidative stress in cardiac tissue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian journal of biochemistry & biophysics
Indian journal of biochemistry & biophysics 生物-生化与分子生物学
CiteScore
2.90
自引率
50.00%
发文量
88
审稿时长
3 months
期刊介绍: Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB. Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.
期刊最新文献
Polyphenol MHQP as an allosteric inhibitor of Kinesin-5: Cease the molecular catwalk of “Drunken Sailor” Design and development of mutant EGFR inhibitors from a structural perspective Protein Carbamylation in Neurodegeneration and other age-related disorders Newly-discovered behaviour in the bacterial histone-like protein, HU Determination of neuroprotective effects of medium chain fatty acids and their derivatives on mutant huntingtin aggregates, oxidative stress and ATP levels in HD150Q cell line model of Huntington’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1