Héctor Echavarría-Heras, Cecilia Leal-Ramírez, Enrique Villa-Diharce, Oscar Castillo
{"title":"利用林氏协调相关系数的值作为标准,从有噪声的数字图像中有效估计大叶藻叶片的面积。","authors":"Héctor Echavarría-Heras, Cecilia Leal-Ramírez, Enrique Villa-Diharce, Oscar Castillo","doi":"10.1186/s13029-014-0029-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Eelgrass is a cosmopolitan seagrass species that provides important ecological services in coastal and near-shore environments. Despite its relevance, loss of eelgrass habitats is noted worldwide. Restoration by replanting plays an important role, and accurate measurements of the standing crop and productivity of transplants are important for evaluating restoration of the ecological functions of natural populations. Traditional assessments are destructive, and although they do not harm natural populations, in transplants the destruction of shoots might cause undesirable alterations. Non-destructive assessments of the aforementioned variables are obtained through allometric proxies expressed in terms of measurements of the lengths or areas of leaves. Digital imagery could produce measurements of leaf attributes without the removal of shoots, but sediment attachments, damage infringed by drag forces or humidity contents induce noise-effects, reducing precision. Available techniques for dealing with noise caused by humidity contents on leaves use the concepts of adjacency, vicinity, connectivity and tolerance of similarity between pixels. Selection of an interval of tolerance of similarity for efficient measurements requires extended computational routines with tied statistical inferences making concomitant tasks complicated and time consuming. The present approach proposes a simplified and cost-effective alternative, and also a general tool aimed to deal with any sort of noise modifying eelgrass leaves images. Moreover, this selection criterion relies only on a single statistics; the calculation of the maximum value of the Concordance Correlation Coefficient for reproducibility of observed areas of leaves through proxies obtained from digital images.</p><p><strong>Results: </strong>Available data reveals that the present method delivers simplified, consistent estimations of areas of eelgrass leaves taken from noisy digital images. Moreover, the proposed procedure is robust because both the optimal interval of tolerance of similarity and the reproducibility of observed leaf areas through digital image surrogates were independent of sample size.</p><p><strong>Conclusion: </strong>The present method provides simplified, unbiased and non-destructive measurements of eelgrass leaf area. These measurements, in conjunction with allometric methods, can predict the dynamics of eelgrass biomass and leaf growth through indirect techniques, reducing the destructive effect of sampling, fundamental to the evaluation of eelgrass restoration projects thereby contributing to the conservation of this important seagrass species.</p>","PeriodicalId":35052,"journal":{"name":"Source Code for Biology and Medicine","volume":"9 1","pages":"29"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13029-014-0029-8","citationCount":"5","resultStr":"{\"title\":\"Using the value of Lin's concordance correlation coefficient as a criterion for efficient estimation of areas of leaves of eelgrass from noisy digital images.\",\"authors\":\"Héctor Echavarría-Heras, Cecilia Leal-Ramírez, Enrique Villa-Diharce, Oscar Castillo\",\"doi\":\"10.1186/s13029-014-0029-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Eelgrass is a cosmopolitan seagrass species that provides important ecological services in coastal and near-shore environments. Despite its relevance, loss of eelgrass habitats is noted worldwide. Restoration by replanting plays an important role, and accurate measurements of the standing crop and productivity of transplants are important for evaluating restoration of the ecological functions of natural populations. Traditional assessments are destructive, and although they do not harm natural populations, in transplants the destruction of shoots might cause undesirable alterations. Non-destructive assessments of the aforementioned variables are obtained through allometric proxies expressed in terms of measurements of the lengths or areas of leaves. Digital imagery could produce measurements of leaf attributes without the removal of shoots, but sediment attachments, damage infringed by drag forces or humidity contents induce noise-effects, reducing precision. Available techniques for dealing with noise caused by humidity contents on leaves use the concepts of adjacency, vicinity, connectivity and tolerance of similarity between pixels. Selection of an interval of tolerance of similarity for efficient measurements requires extended computational routines with tied statistical inferences making concomitant tasks complicated and time consuming. The present approach proposes a simplified and cost-effective alternative, and also a general tool aimed to deal with any sort of noise modifying eelgrass leaves images. Moreover, this selection criterion relies only on a single statistics; the calculation of the maximum value of the Concordance Correlation Coefficient for reproducibility of observed areas of leaves through proxies obtained from digital images.</p><p><strong>Results: </strong>Available data reveals that the present method delivers simplified, consistent estimations of areas of eelgrass leaves taken from noisy digital images. Moreover, the proposed procedure is robust because both the optimal interval of tolerance of similarity and the reproducibility of observed leaf areas through digital image surrogates were independent of sample size.</p><p><strong>Conclusion: </strong>The present method provides simplified, unbiased and non-destructive measurements of eelgrass leaf area. These measurements, in conjunction with allometric methods, can predict the dynamics of eelgrass biomass and leaf growth through indirect techniques, reducing the destructive effect of sampling, fundamental to the evaluation of eelgrass restoration projects thereby contributing to the conservation of this important seagrass species.</p>\",\"PeriodicalId\":35052,\"journal\":{\"name\":\"Source Code for Biology and Medicine\",\"volume\":\"9 1\",\"pages\":\"29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13029-014-0029-8\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Source Code for Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13029-014-0029-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Source Code for Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13029-014-0029-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
Using the value of Lin's concordance correlation coefficient as a criterion for efficient estimation of areas of leaves of eelgrass from noisy digital images.
Background: Eelgrass is a cosmopolitan seagrass species that provides important ecological services in coastal and near-shore environments. Despite its relevance, loss of eelgrass habitats is noted worldwide. Restoration by replanting plays an important role, and accurate measurements of the standing crop and productivity of transplants are important for evaluating restoration of the ecological functions of natural populations. Traditional assessments are destructive, and although they do not harm natural populations, in transplants the destruction of shoots might cause undesirable alterations. Non-destructive assessments of the aforementioned variables are obtained through allometric proxies expressed in terms of measurements of the lengths or areas of leaves. Digital imagery could produce measurements of leaf attributes without the removal of shoots, but sediment attachments, damage infringed by drag forces or humidity contents induce noise-effects, reducing precision. Available techniques for dealing with noise caused by humidity contents on leaves use the concepts of adjacency, vicinity, connectivity and tolerance of similarity between pixels. Selection of an interval of tolerance of similarity for efficient measurements requires extended computational routines with tied statistical inferences making concomitant tasks complicated and time consuming. The present approach proposes a simplified and cost-effective alternative, and also a general tool aimed to deal with any sort of noise modifying eelgrass leaves images. Moreover, this selection criterion relies only on a single statistics; the calculation of the maximum value of the Concordance Correlation Coefficient for reproducibility of observed areas of leaves through proxies obtained from digital images.
Results: Available data reveals that the present method delivers simplified, consistent estimations of areas of eelgrass leaves taken from noisy digital images. Moreover, the proposed procedure is robust because both the optimal interval of tolerance of similarity and the reproducibility of observed leaf areas through digital image surrogates were independent of sample size.
Conclusion: The present method provides simplified, unbiased and non-destructive measurements of eelgrass leaf area. These measurements, in conjunction with allometric methods, can predict the dynamics of eelgrass biomass and leaf growth through indirect techniques, reducing the destructive effect of sampling, fundamental to the evaluation of eelgrass restoration projects thereby contributing to the conservation of this important seagrass species.
期刊介绍:
Source Code for Biology and Medicine is a peer-reviewed open access, online journal that publishes articles on source code employed over a wide range of applications in biology and medicine. The journal"s aim is to publish source code for distribution and use in the public domain in order to advance biological and medical research. Through this dissemination, it may be possible to shorten the time required for solving certain computational problems for which there is limited source code availability or resources.