基于PPI网络和基因表达数据的蛋白质复合物鉴定。

Weijie Chen, Min Li, Xuehong Wu, Jianxin Wang
{"title":"基于PPI网络和基因表达数据的蛋白质复合物鉴定。","authors":"Weijie Chen,&nbsp;Min Li,&nbsp;Xuehong Wu,&nbsp;Jianxin Wang","doi":"10.1504/IJBRA.2015.067337","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of protein complexes is crucial to understand principles of cellular organisation and predict protein functions. In this paper, a novel protein complex discovery algorithm IPCIPG is proposed based on the integration of Protein-Protein Interaction network (PPI network) and gene expression data. IPCIPG is a local search algorithm which has two versions: IPCIPG-n for identifying non-overlapping clusters and IPCIPG-o for detecting overlapping clusters. The experimental results on the yeast PPI network show that IPCIPG can identify protein complexes with specific biological meaning more effectively, precisely and comprehensively than six other algorithms: HUNTER, HC-PIN, CMC, SPICi, MOCDE and MCL. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2015.067337","citationCount":"2","resultStr":"{\"title\":\"Identifying protein complexes based on the integration of PPI network and gene expression data.\",\"authors\":\"Weijie Chen,&nbsp;Min Li,&nbsp;Xuehong Wu,&nbsp;Jianxin Wang\",\"doi\":\"10.1504/IJBRA.2015.067337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identification of protein complexes is crucial to understand principles of cellular organisation and predict protein functions. In this paper, a novel protein complex discovery algorithm IPCIPG is proposed based on the integration of Protein-Protein Interaction network (PPI network) and gene expression data. IPCIPG is a local search algorithm which has two versions: IPCIPG-n for identifying non-overlapping clusters and IPCIPG-o for detecting overlapping clusters. The experimental results on the yeast PPI network show that IPCIPG can identify protein complexes with specific biological meaning more effectively, precisely and comprehensively than six other algorithms: HUNTER, HC-PIN, CMC, SPICi, MOCDE and MCL. </p>\",\"PeriodicalId\":35444,\"journal\":{\"name\":\"International Journal of Bioinformatics Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJBRA.2015.067337\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioinformatics Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBRA.2015.067337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2015.067337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 2

摘要

鉴定蛋白质复合物对于理解细胞组织原理和预测蛋白质功能至关重要。本文提出了一种基于蛋白质-蛋白质相互作用网络(protein - protein Interaction network, PPI网络)和基因表达数据集成的蛋白质复合物发现算法IPCIPG。IPCIPG是一种局部搜索算法,有两个版本:IPCIPG-n(用于识别非重叠簇)和IPCIPG-o(用于检测重叠簇)。酵母PPI网络的实验结果表明,与HUNTER、HC-PIN、CMC、SPICi、mode和MCL等6种算法相比,IPCIPG能够更有效、更精确、更全面地识别具有特定生物学意义的蛋白质复合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying protein complexes based on the integration of PPI network and gene expression data.

Identification of protein complexes is crucial to understand principles of cellular organisation and predict protein functions. In this paper, a novel protein complex discovery algorithm IPCIPG is proposed based on the integration of Protein-Protein Interaction network (PPI network) and gene expression data. IPCIPG is a local search algorithm which has two versions: IPCIPG-n for identifying non-overlapping clusters and IPCIPG-o for detecting overlapping clusters. The experimental results on the yeast PPI network show that IPCIPG can identify protein complexes with specific biological meaning more effectively, precisely and comprehensively than six other algorithms: HUNTER, HC-PIN, CMC, SPICi, MOCDE and MCL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bioinformatics Research and Applications
International Journal of Bioinformatics Research and Applications Health Professions-Health Information Management
CiteScore
0.60
自引率
0.00%
发文量
26
期刊介绍: Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.
期刊最新文献
CoSec In silico studies on Acalypha indica, Catharanthus roseus and Coleus aromaticus derivative compounds against Omicron Prediction of ncRNA from RNA-Seq Data using Machine Learning Techniques A Machine Learning Approach to Assisted Prediction of Alzheimer's Disease with Convolutional Neural Network Development of Predictive Model of Diabetic Using Supervised Machine Learning Classification Algorithm of Ensemble Voting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1