新型抗利什曼原虫化合物的设计与合成。

International Journal of Medicinal Chemistry Pub Date : 2015-01-01 Epub Date: 2015-01-21 DOI:10.1155/2015/302723
Melanie Loedige
{"title":"新型抗利什曼原虫化合物的设计与合成。","authors":"Melanie Loedige","doi":"10.1155/2015/302723","DOIUrl":null,"url":null,"abstract":"<p><p>According to the WHO, infectious diseases, and in particular neglected tropical diseases in poor developing countries, still play a significant role in a vast number of deaths reported worldwide. Among them, leishmaniasis occurs as a complex and clinically diverse illness caused by protozoan Leishmania species which are transmitted through the bite of sandflies. They develop through a complex life cycle, from promastigotes in sandflies to amastigotes in humans. The severity of disease is determined by the type of infecting Leishmania species and also depends strongly on whether the parasite infection leads to a systemic involvement or not. Since the sensitivity towards diverse medicaments highly differs among the Leishmania species, it is advantageous to treat leishmaniasis with species-specific drugs. Towards this goal we report a synthetic methodology and characterization of novel small molecular agents active against both forms of L. major. This synthetic approach allows for rapid access to new active antileishmanial drug templates and their first derivatives in moderate to very good yields. Although the compounds reported here are bioactive, the detailed biological results are part of a more comprehensive study and will be reported separately by our collaborators. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2015 ","pages":"302723"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/302723","citationCount":"4","resultStr":"{\"title\":\"Design and synthesis of novel antileishmanial compounds.\",\"authors\":\"Melanie Loedige\",\"doi\":\"10.1155/2015/302723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>According to the WHO, infectious diseases, and in particular neglected tropical diseases in poor developing countries, still play a significant role in a vast number of deaths reported worldwide. Among them, leishmaniasis occurs as a complex and clinically diverse illness caused by protozoan Leishmania species which are transmitted through the bite of sandflies. They develop through a complex life cycle, from promastigotes in sandflies to amastigotes in humans. The severity of disease is determined by the type of infecting Leishmania species and also depends strongly on whether the parasite infection leads to a systemic involvement or not. Since the sensitivity towards diverse medicaments highly differs among the Leishmania species, it is advantageous to treat leishmaniasis with species-specific drugs. Towards this goal we report a synthetic methodology and characterization of novel small molecular agents active against both forms of L. major. This synthetic approach allows for rapid access to new active antileishmanial drug templates and their first derivatives in moderate to very good yields. Although the compounds reported here are bioactive, the detailed biological results are part of a more comprehensive study and will be reported separately by our collaborators. </p>\",\"PeriodicalId\":14082,\"journal\":{\"name\":\"International Journal of Medicinal Chemistry\",\"volume\":\"2015 \",\"pages\":\"302723\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2015/302723\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/302723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/302723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

据世界卫生组织称,传染病,特别是在贫穷的发展中国家被忽视的热带病,仍然在全世界报告的大量死亡中起着重要作用。其中,利什曼病是一种复杂的临床多样化疾病,由原生动物利什曼原虫引起,通过白蛉叮咬传播。它们的发育经历了一个复杂的生命周期,从白蛉的原无性体到人类的无性体。疾病的严重程度取决于感染利什曼原虫种类的类型,也在很大程度上取决于寄生虫感染是否导致全身受累。由于不同种类的利什曼原虫对不同药物的敏感性差异很大,因此用特定种类的药物治疗利什曼原虫病是有利的。为了实现这一目标,我们报告了一种新的小分子制剂的合成方法和特性,这些制剂对两种形式的L. major都有活性。这种合成方法可以快速获得新的活性抗利什曼药物模板和它们的第一个衍生物,产量中等到非常高。虽然这里报道的化合物具有生物活性,但详细的生物学结果是更全面研究的一部分,将由我们的合作者单独报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and synthesis of novel antileishmanial compounds.

According to the WHO, infectious diseases, and in particular neglected tropical diseases in poor developing countries, still play a significant role in a vast number of deaths reported worldwide. Among them, leishmaniasis occurs as a complex and clinically diverse illness caused by protozoan Leishmania species which are transmitted through the bite of sandflies. They develop through a complex life cycle, from promastigotes in sandflies to amastigotes in humans. The severity of disease is determined by the type of infecting Leishmania species and also depends strongly on whether the parasite infection leads to a systemic involvement or not. Since the sensitivity towards diverse medicaments highly differs among the Leishmania species, it is advantageous to treat leishmaniasis with species-specific drugs. Towards this goal we report a synthetic methodology and characterization of novel small molecular agents active against both forms of L. major. This synthetic approach allows for rapid access to new active antileishmanial drug templates and their first derivatives in moderate to very good yields. Although the compounds reported here are bioactive, the detailed biological results are part of a more comprehensive study and will be reported separately by our collaborators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: International Journal of Medicinal Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry associated with drug discovery, design, and synthesis. International Journal of Medicinal Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry associated with drug discovery, design, and synthesis.
期刊最新文献
Hair Growth Promoting Effect of Dicerocaryum senecioides Phytochemicals. Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties Evaluation of the Molecular State of Piperine in Cyclodextrin Complexes by Near-Infrared Spectroscopy and Solid-State Fluorescence Measurements. Synthesis and Evaluation of Baylis-Hillman Reaction Derived Imidazole and Triazole Cinnamates as Antifungal Agents. Crystallography and Its Impact on Carbonic Anhydrase Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1