磷脂酰肌醇磷酸信号在丝状生长丝裂原激活蛋白激酶途径中的调节作用。

Eukaryotic Cell Pub Date : 2015-04-01 Epub Date: 2015-02-27 DOI:10.1128/EC.00013-15
Hema Adhikari, Paul J Cullen
{"title":"磷脂酰肌醇磷酸信号在丝状生长丝裂原激活蛋白激酶途径中的调节作用。","authors":"Hema Adhikari,&nbsp;Paul J Cullen","doi":"10.1128/EC.00013-15","DOIUrl":null,"url":null,"abstract":"<p><p>Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle identity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regulation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83) into the filamentous (Σ1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/mat formation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p), and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Various PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation MAPK pathway and other cellular processes. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":"14 4","pages":"427-40"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00013-15","citationCount":"11","resultStr":"{\"title\":\"Role of phosphatidylinositol phosphate signaling in the regulation of the filamentous-growth mitogen-activated protein kinase pathway.\",\"authors\":\"Hema Adhikari,&nbsp;Paul J Cullen\",\"doi\":\"10.1128/EC.00013-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle identity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regulation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83) into the filamentous (Σ1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/mat formation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p), and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Various PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation MAPK pathway and other cellular processes. </p>\",\"PeriodicalId\":11891,\"journal\":{\"name\":\"Eukaryotic Cell\",\"volume\":\"14 4\",\"pages\":\"427-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1128/EC.00013-15\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eukaryotic Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/EC.00013-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eukaryotic Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/EC.00013-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/2/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

磷脂酰肌醇(PI)的可逆磷酸化是决定细胞器身份的关键事件,也是许多生物过程中的潜在调节特征。在这里,我们研究了PI信号在酵母丝裂原活化蛋白激酶(MAPK)通路调控中的作用。在高尔基体(Pik1p)或质膜(PM)上生成磷脂酰肌醇4-磷酸[PI(4)P]或PI(4,5)P2 (Mss4p和Stt4p)的脂质激酶是丝状生长MAPK通路信号传导所必需的。将PIK1条件等位基因(PIK1 -83)引入丝状(Σ1278b)背景会降低MAPK的活性,导致侵袭性生长和生物膜/席形成缺陷。MAPK在PM上起作用的调节蛋白,包括Msb2p, Sho1p和Cdc42p,在pik1-83突变体中定位错误,这可能解释了PI(4)P激酶突变体的信号缺陷。其他PI激酶(Fab1p和Vps34p)以及PIP (synaptojanin-type)磷酸酶的组合也影响丝状生长的MAPK途径。这些蛋白的缺失导致细胞极性缺陷,这可能是这些突变体中出现的MAPK信号缺陷的基础。根据这种可能性,latrunculin A (LatA)对肌动蛋白细胞骨架的破坏抑制了丝状生长途径。各种PIP信号突变体在单倍体细胞的轴向出芽、细胞壁构建或高渗透压甘油反应(HOG)途径的适当调节方面也存在缺陷。总之,该研究将PI信号传导的作用扩展到分化MAPK途径和其他细胞过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of phosphatidylinositol phosphate signaling in the regulation of the filamentous-growth mitogen-activated protein kinase pathway.

Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle identity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regulation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83) into the filamentous (Σ1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/mat formation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p), and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Various PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation MAPK pathway and other cellular processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eukaryotic Cell
Eukaryotic Cell 生物-微生物学
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Eukaryotic Cell (EC) focuses on eukaryotic microbiology and presents reports of basic research on simple eukaryotic microorganisms, such as yeasts, fungi, algae, protozoa, and social amoebae. The journal also covers viruses of these organisms and their organelles and their interactions with other living systems, where the focus is on the eukaryotic cell. Topics include: - Basic biology - Molecular and cellular biology - Mechanisms, and control, of developmental pathways - Structure and form inherent in basic biological processes - Cellular architecture - Metabolic physiology - Comparative genomics, biochemistry, and evolution - Population dynamics - Ecology
期刊最新文献
Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis. Saccharomyces cerevisiae Is Dependent on Vesicular Traffic between the Golgi Apparatus and the Vacuole When Inositolphosphorylceramide Synthase Aur1 Is Inactivated. Yeast Integral Membrane Proteins Apq12, Brl1, and Brr6 Form a Complex Important for Regulation of Membrane Homeostasis and Nuclear Pore Complex Biogenesis. Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions. Virulence-Associated Enzymes of Cryptococcus neoformans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1